jumpserver/apps/users/models/user/_face.py

57 lines
2.1 KiB
Python

import base64
import struct
import math
from django.conf import settings
from django.core.exceptions import ValidationError
from common.utils import (
get_logger,
)
logger = get_logger(__file__)
class FaceMixin:
face_vector = None
def get_face_vector(self) -> list[float]:
if not self.face_vector:
raise ValidationError("Face vector is not set.")
return self._decode_base64_vector(str(self.face_vector))
def check_face(self, code) -> bool:
distance = self.compare_euclidean_distance(code)
similarity = self.compare_cosine_similarity(code)
return distance < settings.FACE_RECOGNITION_DISTANCE_THRESHOLD \
and similarity > settings.FACE_RECOGNITION_COSINE_THRESHOLD
def compare_euclidean_distance(self, base64_vector: str) -> float:
target_vector = self._decode_base64_vector(base64_vector)
current_vector = self.get_face_vector()
return self._calculate_euclidean_distance(current_vector, target_vector)
def compare_cosine_similarity(self, base64_vector: str) -> float:
target_vector = self._decode_base64_vector(base64_vector)
current_vector = self.get_face_vector()
return self._calculate_cosine_similarity(current_vector, target_vector)
@staticmethod
def _decode_base64_vector(base64_vector: str) -> list[float]:
byte_data = base64.b64decode(base64_vector)
return list(struct.unpack('<128d', byte_data))
@staticmethod
def _calculate_euclidean_distance(vec1: list[float], vec2: list[float]) -> float:
return sum((x - y) ** 2 for x, y in zip(vec1, vec2)) ** 0.5
@staticmethod
def _calculate_cosine_similarity(vec1: list[float], vec2: list[float]) -> float:
dot_product = sum(x * y for x, y in zip(vec1, vec2))
magnitude_vec1 = math.sqrt(sum(x ** 2 for x in vec1))
magnitude_vec2 = math.sqrt(sum(y ** 2 for y in vec2))
if magnitude_vec1 == 0 or magnitude_vec2 == 0:
raise ValueError("Vector magnitude cannot be zero.")
return dot_product / (magnitude_vec1 * magnitude_vec2)