frp/vendor/github.com/fatedier/kcp-go/kcp.go

1013 lines
22 KiB
Go

// Package kcp - A Fast and Reliable ARQ Protocol
package kcp
import (
"encoding/binary"
"sync/atomic"
)
const (
IKCP_RTO_NDL = 30 // no delay min rto
IKCP_RTO_MIN = 100 // normal min rto
IKCP_RTO_DEF = 200
IKCP_RTO_MAX = 60000
IKCP_CMD_PUSH = 81 // cmd: push data
IKCP_CMD_ACK = 82 // cmd: ack
IKCP_CMD_WASK = 83 // cmd: window probe (ask)
IKCP_CMD_WINS = 84 // cmd: window size (tell)
IKCP_ASK_SEND = 1 // need to send IKCP_CMD_WASK
IKCP_ASK_TELL = 2 // need to send IKCP_CMD_WINS
IKCP_WND_SND = 32
IKCP_WND_RCV = 32
IKCP_MTU_DEF = 1400
IKCP_ACK_FAST = 3
IKCP_INTERVAL = 100
IKCP_OVERHEAD = 24
IKCP_DEADLINK = 20
IKCP_THRESH_INIT = 2
IKCP_THRESH_MIN = 2
IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
)
// output_callback is a prototype which ought capture conn and call conn.Write
type output_callback func(buf []byte, size int)
/* encode 8 bits unsigned int */
func ikcp_encode8u(p []byte, c byte) []byte {
p[0] = c
return p[1:]
}
/* decode 8 bits unsigned int */
func ikcp_decode8u(p []byte, c *byte) []byte {
*c = p[0]
return p[1:]
}
/* encode 16 bits unsigned int (lsb) */
func ikcp_encode16u(p []byte, w uint16) []byte {
binary.LittleEndian.PutUint16(p, w)
return p[2:]
}
/* decode 16 bits unsigned int (lsb) */
func ikcp_decode16u(p []byte, w *uint16) []byte {
*w = binary.LittleEndian.Uint16(p)
return p[2:]
}
/* encode 32 bits unsigned int (lsb) */
func ikcp_encode32u(p []byte, l uint32) []byte {
binary.LittleEndian.PutUint32(p, l)
return p[4:]
}
/* decode 32 bits unsigned int (lsb) */
func ikcp_decode32u(p []byte, l *uint32) []byte {
*l = binary.LittleEndian.Uint32(p)
return p[4:]
}
func _imin_(a, b uint32) uint32 {
if a <= b {
return a
}
return b
}
func _imax_(a, b uint32) uint32 {
if a >= b {
return a
}
return b
}
func _ibound_(lower, middle, upper uint32) uint32 {
return _imin_(_imax_(lower, middle), upper)
}
func _itimediff(later, earlier uint32) int32 {
return (int32)(later - earlier)
}
// segment defines a KCP segment
type segment struct {
conv uint32
cmd uint8
frg uint8
wnd uint16
ts uint32
sn uint32
una uint32
rto uint32
xmit uint32
resendts uint32
fastack uint32
acked uint32 // mark if the seg has acked
data []byte
}
// encode a segment into buffer
func (seg *segment) encode(ptr []byte) []byte {
ptr = ikcp_encode32u(ptr, seg.conv)
ptr = ikcp_encode8u(ptr, seg.cmd)
ptr = ikcp_encode8u(ptr, seg.frg)
ptr = ikcp_encode16u(ptr, seg.wnd)
ptr = ikcp_encode32u(ptr, seg.ts)
ptr = ikcp_encode32u(ptr, seg.sn)
ptr = ikcp_encode32u(ptr, seg.una)
ptr = ikcp_encode32u(ptr, uint32(len(seg.data)))
atomic.AddUint64(&DefaultSnmp.OutSegs, 1)
return ptr
}
// KCP defines a single KCP connection
type KCP struct {
conv, mtu, mss, state uint32
snd_una, snd_nxt, rcv_nxt uint32
ssthresh uint32
rx_rttvar, rx_srtt int32
rx_rto, rx_minrto uint32
snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
interval, ts_flush uint32
nodelay, updated uint32
ts_probe, probe_wait uint32
dead_link, incr uint32
fastresend int32
nocwnd, stream int32
snd_queue []segment
rcv_queue []segment
snd_buf []segment
rcv_buf []segment
acklist []ackItem
buffer []byte
output output_callback
}
type ackItem struct {
sn uint32
ts uint32
}
// NewKCP create a new kcp control object, 'conv' must equal in two endpoint
// from the same connection.
func NewKCP(conv uint32, output output_callback) *KCP {
kcp := new(KCP)
kcp.conv = conv
kcp.snd_wnd = IKCP_WND_SND
kcp.rcv_wnd = IKCP_WND_RCV
kcp.rmt_wnd = IKCP_WND_RCV
kcp.mtu = IKCP_MTU_DEF
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = make([]byte, (kcp.mtu+IKCP_OVERHEAD)*3)
kcp.rx_rto = IKCP_RTO_DEF
kcp.rx_minrto = IKCP_RTO_MIN
kcp.interval = IKCP_INTERVAL
kcp.ts_flush = IKCP_INTERVAL
kcp.ssthresh = IKCP_THRESH_INIT
kcp.dead_link = IKCP_DEADLINK
kcp.output = output
return kcp
}
// newSegment creates a KCP segment
func (kcp *KCP) newSegment(size int) (seg segment) {
seg.data = xmitBuf.Get().([]byte)[:size]
return
}
// delSegment recycles a KCP segment
func (kcp *KCP) delSegment(seg *segment) {
if seg.data != nil {
xmitBuf.Put(seg.data)
seg.data = nil
}
}
// PeekSize checks the size of next message in the recv queue
func (kcp *KCP) PeekSize() (length int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
seg := &kcp.rcv_queue[0]
if seg.frg == 0 {
return len(seg.data)
}
if len(kcp.rcv_queue) < int(seg.frg+1) {
return -1
}
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
length += len(seg.data)
if seg.frg == 0 {
break
}
}
return
}
// Recv is user/upper level recv: returns size, returns below zero for EAGAIN
func (kcp *KCP) Recv(buffer []byte) (n int) {
if len(kcp.rcv_queue) == 0 {
return -1
}
peeksize := kcp.PeekSize()
if peeksize < 0 {
return -2
}
if peeksize > len(buffer) {
return -3
}
var fast_recover bool
if len(kcp.rcv_queue) >= int(kcp.rcv_wnd) {
fast_recover = true
}
// merge fragment
count := 0
for k := range kcp.rcv_queue {
seg := &kcp.rcv_queue[k]
copy(buffer, seg.data)
buffer = buffer[len(seg.data):]
n += len(seg.data)
count++
kcp.delSegment(seg)
if seg.frg == 0 {
break
}
}
if count > 0 {
kcp.rcv_queue = kcp.remove_front(kcp.rcv_queue, count)
}
// move available data from rcv_buf -> rcv_queue
count = 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
kcp.rcv_nxt++
count++
} else {
break
}
}
if count > 0 {
kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...)
kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count)
}
// fast recover
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) && fast_recover {
// ready to send back IKCP_CMD_WINS in ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
}
return
}
// Send is user/upper level send, returns below zero for error
func (kcp *KCP) Send(buffer []byte) int {
var count int
if len(buffer) == 0 {
return -1
}
// append to previous segment in streaming mode (if possible)
if kcp.stream != 0 {
n := len(kcp.snd_queue)
if n > 0 {
seg := &kcp.snd_queue[n-1]
if len(seg.data) < int(kcp.mss) {
capacity := int(kcp.mss) - len(seg.data)
extend := capacity
if len(buffer) < capacity {
extend = len(buffer)
}
// grow slice, the underlying cap is guaranteed to
// be larger than kcp.mss
oldlen := len(seg.data)
seg.data = seg.data[:oldlen+extend]
copy(seg.data[oldlen:], buffer)
buffer = buffer[extend:]
}
}
if len(buffer) == 0 {
return 0
}
}
if len(buffer) <= int(kcp.mss) {
count = 1
} else {
count = (len(buffer) + int(kcp.mss) - 1) / int(kcp.mss)
}
if count > 255 {
return -2
}
if count == 0 {
count = 1
}
for i := 0; i < count; i++ {
var size int
if len(buffer) > int(kcp.mss) {
size = int(kcp.mss)
} else {
size = len(buffer)
}
seg := kcp.newSegment(size)
copy(seg.data, buffer[:size])
if kcp.stream == 0 { // message mode
seg.frg = uint8(count - i - 1)
} else { // stream mode
seg.frg = 0
}
kcp.snd_queue = append(kcp.snd_queue, seg)
buffer = buffer[size:]
}
return 0
}
func (kcp *KCP) update_ack(rtt int32) {
// https://tools.ietf.org/html/rfc6298
var rto uint32
if kcp.rx_srtt == 0 {
kcp.rx_srtt = rtt
kcp.rx_rttvar = rtt >> 1
} else {
delta := rtt - kcp.rx_srtt
kcp.rx_srtt += delta >> 3
if delta < 0 {
delta = -delta
}
if rtt < kcp.rx_srtt-kcp.rx_rttvar {
// if the new RTT sample is below the bottom of the range of
// what an RTT measurement is expected to be.
// give an 8x reduced weight versus its normal weighting
kcp.rx_rttvar += (delta - kcp.rx_rttvar) >> 5
} else {
kcp.rx_rttvar += (delta - kcp.rx_rttvar) >> 2
}
}
rto = uint32(kcp.rx_srtt) + _imax_(kcp.interval, uint32(kcp.rx_rttvar)<<2)
kcp.rx_rto = _ibound_(kcp.rx_minrto, rto, IKCP_RTO_MAX)
}
func (kcp *KCP) shrink_buf() {
if len(kcp.snd_buf) > 0 {
seg := &kcp.snd_buf[0]
kcp.snd_una = seg.sn
} else {
kcp.snd_una = kcp.snd_nxt
}
}
func (kcp *KCP) parse_ack(sn uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if sn == seg.sn {
seg.acked = 1
kcp.delSegment(seg)
break
}
if _itimediff(sn, seg.sn) < 0 {
break
}
}
}
func (kcp *KCP) parse_fastack(sn, ts uint32) {
if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
return
}
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(sn, seg.sn) < 0 {
break
} else if sn != seg.sn && _itimediff(seg.ts, ts) <= 0 {
seg.fastack++
}
}
}
func (kcp *KCP) parse_una(una uint32) {
count := 0
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
if _itimediff(una, seg.sn) > 0 {
kcp.delSegment(seg)
count++
} else {
break
}
}
if count > 0 {
kcp.snd_buf = kcp.remove_front(kcp.snd_buf, count)
}
}
// ack append
func (kcp *KCP) ack_push(sn, ts uint32) {
kcp.acklist = append(kcp.acklist, ackItem{sn, ts})
}
// returns true if data has repeated
func (kcp *KCP) parse_data(newseg segment) bool {
sn := newseg.sn
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
_itimediff(sn, kcp.rcv_nxt) < 0 {
return true
}
n := len(kcp.rcv_buf) - 1
insert_idx := 0
repeat := false
for i := n; i >= 0; i-- {
seg := &kcp.rcv_buf[i]
if seg.sn == sn {
repeat = true
break
}
if _itimediff(sn, seg.sn) > 0 {
insert_idx = i + 1
break
}
}
if !repeat {
// replicate the content if it's new
dataCopy := xmitBuf.Get().([]byte)[:len(newseg.data)]
copy(dataCopy, newseg.data)
newseg.data = dataCopy
if insert_idx == n+1 {
kcp.rcv_buf = append(kcp.rcv_buf, newseg)
} else {
kcp.rcv_buf = append(kcp.rcv_buf, segment{})
copy(kcp.rcv_buf[insert_idx+1:], kcp.rcv_buf[insert_idx:])
kcp.rcv_buf[insert_idx] = newseg
}
}
// move available data from rcv_buf -> rcv_queue
count := 0
for k := range kcp.rcv_buf {
seg := &kcp.rcv_buf[k]
if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
kcp.rcv_nxt++
count++
} else {
break
}
}
if count > 0 {
kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...)
kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count)
}
return repeat
}
// Input when you received a low level packet (eg. UDP packet), call it
// regular indicates a regular packet has received(not from FEC)
func (kcp *KCP) Input(data []byte, regular, ackNoDelay bool) int {
snd_una := kcp.snd_una
if len(data) < IKCP_OVERHEAD {
return -1
}
var latest uint32 // the latest ack packet
var flag int
var inSegs uint64
for {
var ts, sn, length, una, conv uint32
var wnd uint16
var cmd, frg uint8
if len(data) < int(IKCP_OVERHEAD) {
break
}
data = ikcp_decode32u(data, &conv)
if conv != kcp.conv {
return -1
}
data = ikcp_decode8u(data, &cmd)
data = ikcp_decode8u(data, &frg)
data = ikcp_decode16u(data, &wnd)
data = ikcp_decode32u(data, &ts)
data = ikcp_decode32u(data, &sn)
data = ikcp_decode32u(data, &una)
data = ikcp_decode32u(data, &length)
if len(data) < int(length) {
return -2
}
if cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK &&
cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS {
return -3
}
// only trust window updates from regular packets. i.e: latest update
if regular {
kcp.rmt_wnd = uint32(wnd)
}
kcp.parse_una(una)
kcp.shrink_buf()
if cmd == IKCP_CMD_ACK {
kcp.parse_ack(sn)
kcp.parse_fastack(sn, ts)
flag |= 1
latest = ts
} else if cmd == IKCP_CMD_PUSH {
repeat := true
if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) < 0 {
kcp.ack_push(sn, ts)
if _itimediff(sn, kcp.rcv_nxt) >= 0 {
var seg segment
seg.conv = conv
seg.cmd = cmd
seg.frg = frg
seg.wnd = wnd
seg.ts = ts
seg.sn = sn
seg.una = una
seg.data = data[:length] // delayed data copying
repeat = kcp.parse_data(seg)
}
}
if regular && repeat {
atomic.AddUint64(&DefaultSnmp.RepeatSegs, 1)
}
} else if cmd == IKCP_CMD_WASK {
// ready to send back IKCP_CMD_WINS in Ikcp_flush
// tell remote my window size
kcp.probe |= IKCP_ASK_TELL
} else if cmd == IKCP_CMD_WINS {
// do nothing
} else {
return -3
}
inSegs++
data = data[length:]
}
atomic.AddUint64(&DefaultSnmp.InSegs, inSegs)
// update rtt with the latest ts
// ignore the FEC packet
if flag != 0 && regular {
current := currentMs()
if _itimediff(current, latest) >= 0 {
kcp.update_ack(_itimediff(current, latest))
}
}
// cwnd update when packet arrived
if kcp.nocwnd == 0 {
if _itimediff(kcp.snd_una, snd_una) > 0 {
if kcp.cwnd < kcp.rmt_wnd {
mss := kcp.mss
if kcp.cwnd < kcp.ssthresh {
kcp.cwnd++
kcp.incr += mss
} else {
if kcp.incr < mss {
kcp.incr = mss
}
kcp.incr += (mss*mss)/kcp.incr + (mss / 16)
if (kcp.cwnd+1)*mss <= kcp.incr {
kcp.cwnd++
}
}
if kcp.cwnd > kcp.rmt_wnd {
kcp.cwnd = kcp.rmt_wnd
kcp.incr = kcp.rmt_wnd * mss
}
}
}
}
if ackNoDelay && len(kcp.acklist) > 0 { // ack immediately
kcp.flush(true)
}
return 0
}
func (kcp *KCP) wnd_unused() uint16 {
if len(kcp.rcv_queue) < int(kcp.rcv_wnd) {
return uint16(int(kcp.rcv_wnd) - len(kcp.rcv_queue))
}
return 0
}
// flush pending data
func (kcp *KCP) flush(ackOnly bool) uint32 {
var seg segment
seg.conv = kcp.conv
seg.cmd = IKCP_CMD_ACK
seg.wnd = kcp.wnd_unused()
seg.una = kcp.rcv_nxt
buffer := kcp.buffer
// flush acknowledges
ptr := buffer
for i, ack := range kcp.acklist {
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
// filter jitters caused by bufferbloat
if ack.sn >= kcp.rcv_nxt || len(kcp.acklist)-1 == i {
seg.sn, seg.ts = ack.sn, ack.ts
ptr = seg.encode(ptr)
}
}
kcp.acklist = kcp.acklist[0:0]
if ackOnly { // flash remain ack segments
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
return kcp.interval
}
// probe window size (if remote window size equals zero)
if kcp.rmt_wnd == 0 {
current := currentMs()
if kcp.probe_wait == 0 {
kcp.probe_wait = IKCP_PROBE_INIT
kcp.ts_probe = current + kcp.probe_wait
} else {
if _itimediff(current, kcp.ts_probe) >= 0 {
if kcp.probe_wait < IKCP_PROBE_INIT {
kcp.probe_wait = IKCP_PROBE_INIT
}
kcp.probe_wait += kcp.probe_wait / 2
if kcp.probe_wait > IKCP_PROBE_LIMIT {
kcp.probe_wait = IKCP_PROBE_LIMIT
}
kcp.ts_probe = current + kcp.probe_wait
kcp.probe |= IKCP_ASK_SEND
}
}
} else {
kcp.ts_probe = 0
kcp.probe_wait = 0
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_SEND) != 0 {
seg.cmd = IKCP_CMD_WASK
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = seg.encode(ptr)
}
// flush window probing commands
if (kcp.probe & IKCP_ASK_TELL) != 0 {
seg.cmd = IKCP_CMD_WINS
size := len(buffer) - len(ptr)
if size+IKCP_OVERHEAD > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = seg.encode(ptr)
}
kcp.probe = 0
// calculate window size
cwnd := _imin_(kcp.snd_wnd, kcp.rmt_wnd)
if kcp.nocwnd == 0 {
cwnd = _imin_(kcp.cwnd, cwnd)
}
// sliding window, controlled by snd_nxt && sna_una+cwnd
newSegsCount := 0
for k := range kcp.snd_queue {
if _itimediff(kcp.snd_nxt, kcp.snd_una+cwnd) >= 0 {
break
}
newseg := kcp.snd_queue[k]
newseg.conv = kcp.conv
newseg.cmd = IKCP_CMD_PUSH
newseg.sn = kcp.snd_nxt
kcp.snd_buf = append(kcp.snd_buf, newseg)
kcp.snd_nxt++
newSegsCount++
}
if newSegsCount > 0 {
kcp.snd_queue = kcp.remove_front(kcp.snd_queue, newSegsCount)
}
// calculate resent
resent := uint32(kcp.fastresend)
if kcp.fastresend <= 0 {
resent = 0xffffffff
}
// check for retransmissions
current := currentMs()
var change, lost, lostSegs, fastRetransSegs, earlyRetransSegs uint64
minrto := int32(kcp.interval)
ref := kcp.snd_buf[:len(kcp.snd_buf)] // for bounds check elimination
for k := range ref {
segment := &ref[k]
needsend := false
if segment.acked == 1 {
continue
}
if segment.xmit == 0 { // initial transmit
needsend = true
segment.rto = kcp.rx_rto
segment.resendts = current + segment.rto
} else if _itimediff(current, segment.resendts) >= 0 { // RTO
needsend = true
if kcp.nodelay == 0 {
segment.rto += kcp.rx_rto
} else {
segment.rto += kcp.rx_rto / 2
}
segment.resendts = current + segment.rto
lost++
lostSegs++
} else if segment.fastack >= resent { // fast retransmit
needsend = true
segment.fastack = 0
segment.rto = kcp.rx_rto
segment.resendts = current + segment.rto
change++
fastRetransSegs++
} else if segment.fastack > 0 && newSegsCount == 0 { // early retransmit
needsend = true
segment.fastack = 0
segment.rto = kcp.rx_rto
segment.resendts = current + segment.rto
change++
earlyRetransSegs++
}
if needsend {
current = currentMs() // time update for a blocking call
segment.xmit++
segment.ts = current
segment.wnd = seg.wnd
segment.una = seg.una
size := len(buffer) - len(ptr)
need := IKCP_OVERHEAD + len(segment.data)
if size+need > int(kcp.mtu) {
kcp.output(buffer, size)
ptr = buffer
}
ptr = segment.encode(ptr)
copy(ptr, segment.data)
ptr = ptr[len(segment.data):]
if segment.xmit >= kcp.dead_link {
kcp.state = 0xFFFFFFFF
}
}
// get the nearest rto
if rto := _itimediff(segment.resendts, current); rto > 0 && rto < minrto {
minrto = rto
}
}
// flash remain segments
size := len(buffer) - len(ptr)
if size > 0 {
kcp.output(buffer, size)
}
// counter updates
sum := lostSegs
if lostSegs > 0 {
atomic.AddUint64(&DefaultSnmp.LostSegs, lostSegs)
}
if fastRetransSegs > 0 {
atomic.AddUint64(&DefaultSnmp.FastRetransSegs, fastRetransSegs)
sum += fastRetransSegs
}
if earlyRetransSegs > 0 {
atomic.AddUint64(&DefaultSnmp.EarlyRetransSegs, earlyRetransSegs)
sum += earlyRetransSegs
}
if sum > 0 {
atomic.AddUint64(&DefaultSnmp.RetransSegs, sum)
}
// cwnd update
if kcp.nocwnd == 0 {
// update ssthresh
// rate halving, https://tools.ietf.org/html/rfc6937
if change > 0 {
inflight := kcp.snd_nxt - kcp.snd_una
kcp.ssthresh = inflight / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = kcp.ssthresh + resent
kcp.incr = kcp.cwnd * kcp.mss
}
// congestion control, https://tools.ietf.org/html/rfc5681
if lost > 0 {
kcp.ssthresh = cwnd / 2
if kcp.ssthresh < IKCP_THRESH_MIN {
kcp.ssthresh = IKCP_THRESH_MIN
}
kcp.cwnd = 1
kcp.incr = kcp.mss
}
if kcp.cwnd < 1 {
kcp.cwnd = 1
kcp.incr = kcp.mss
}
}
return uint32(minrto)
}
// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
// ikcp_check when to call it again (without ikcp_input/_send calling).
// 'current' - current timestamp in millisec.
func (kcp *KCP) Update() {
var slap int32
current := currentMs()
if kcp.updated == 0 {
kcp.updated = 1
kcp.ts_flush = current
}
slap = _itimediff(current, kcp.ts_flush)
if slap >= 10000 || slap < -10000 {
kcp.ts_flush = current
slap = 0
}
if slap >= 0 {
kcp.ts_flush += kcp.interval
if _itimediff(current, kcp.ts_flush) >= 0 {
kcp.ts_flush = current + kcp.interval
}
kcp.flush(false)
}
}
// Check determines when should you invoke ikcp_update:
// returns when you should invoke ikcp_update in millisec, if there
// is no ikcp_input/_send calling. you can call ikcp_update in that
// time, instead of call update repeatly.
// Important to reduce unnacessary ikcp_update invoking. use it to
// schedule ikcp_update (eg. implementing an epoll-like mechanism,
// or optimize ikcp_update when handling massive kcp connections)
func (kcp *KCP) Check() uint32 {
current := currentMs()
ts_flush := kcp.ts_flush
tm_flush := int32(0x7fffffff)
tm_packet := int32(0x7fffffff)
minimal := uint32(0)
if kcp.updated == 0 {
return current
}
if _itimediff(current, ts_flush) >= 10000 ||
_itimediff(current, ts_flush) < -10000 {
ts_flush = current
}
if _itimediff(current, ts_flush) >= 0 {
return current
}
tm_flush = _itimediff(ts_flush, current)
for k := range kcp.snd_buf {
seg := &kcp.snd_buf[k]
diff := _itimediff(seg.resendts, current)
if diff <= 0 {
return current
}
if diff < tm_packet {
tm_packet = diff
}
}
minimal = uint32(tm_packet)
if tm_packet >= tm_flush {
minimal = uint32(tm_flush)
}
if minimal >= kcp.interval {
minimal = kcp.interval
}
return current + minimal
}
// SetMtu changes MTU size, default is 1400
func (kcp *KCP) SetMtu(mtu int) int {
if mtu < 50 || mtu < IKCP_OVERHEAD {
return -1
}
buffer := make([]byte, (mtu+IKCP_OVERHEAD)*3)
if buffer == nil {
return -2
}
kcp.mtu = uint32(mtu)
kcp.mss = kcp.mtu - IKCP_OVERHEAD
kcp.buffer = buffer
return 0
}
// NoDelay options
// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
// nodelay: 0:disable(default), 1:enable
// interval: internal update timer interval in millisec, default is 100ms
// resend: 0:disable fast resend(default), 1:enable fast resend
// nc: 0:normal congestion control(default), 1:disable congestion control
func (kcp *KCP) NoDelay(nodelay, interval, resend, nc int) int {
if nodelay >= 0 {
kcp.nodelay = uint32(nodelay)
if nodelay != 0 {
kcp.rx_minrto = IKCP_RTO_NDL
} else {
kcp.rx_minrto = IKCP_RTO_MIN
}
}
if interval >= 0 {
if interval > 5000 {
interval = 5000
} else if interval < 10 {
interval = 10
}
kcp.interval = uint32(interval)
}
if resend >= 0 {
kcp.fastresend = int32(resend)
}
if nc >= 0 {
kcp.nocwnd = int32(nc)
}
return 0
}
// WndSize sets maximum window size: sndwnd=32, rcvwnd=32 by default
func (kcp *KCP) WndSize(sndwnd, rcvwnd int) int {
if sndwnd > 0 {
kcp.snd_wnd = uint32(sndwnd)
}
if rcvwnd > 0 {
kcp.rcv_wnd = uint32(rcvwnd)
}
return 0
}
// WaitSnd gets how many packet is waiting to be sent
func (kcp *KCP) WaitSnd() int {
return len(kcp.snd_buf) + len(kcp.snd_queue)
}
// remove front n elements from queue
func (kcp *KCP) remove_front(q []segment, n int) []segment {
newn := copy(q, q[n:])
return q[:newn]
}