consul/tlsutil/config.go

994 lines
31 KiB
Go

package tlsutil
import (
"crypto/tls"
"crypto/x509"
"fmt"
"io/ioutil"
"net"
"os"
"path/filepath"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/consul/logging"
)
// ALPNWrapper is a function that is used to wrap a non-TLS connection and
// returns an appropriate TLS connection or error. This taks a datacenter and
// node name as argument to configure the desired SNI value and the desired
// next proto for configuring ALPN.
type ALPNWrapper func(dc, nodeName, alpnProto string, conn net.Conn) (net.Conn, error)
// DCWrapper is a function that is used to wrap a non-TLS connection
// and returns an appropriate TLS connection or error. This takes
// a datacenter as an argument.
type DCWrapper func(dc string, conn net.Conn) (net.Conn, error)
// Wrapper is a variant of DCWrapper, where the DC is provided as
// a constant value. This is usually done by currying DCWrapper.
type Wrapper func(conn net.Conn) (net.Conn, error)
// TLSLookup maps the tls_min_version configuration to the internal value
var TLSLookup = map[string]uint16{
"": tls.VersionTLS10, // default in golang
"tls10": tls.VersionTLS10,
"tls11": tls.VersionTLS11,
"tls12": tls.VersionTLS12,
"tls13": tls.VersionTLS13,
}
// TLSVersions has all the keys from the map above.
var TLSVersions = strings.Join(tlsVersions(), ", ")
// Config used to create tls.Config
type Config struct {
// VerifyIncoming is used to verify the authenticity of incoming
// connections. This means that TCP requests are forbidden, only
// allowing for TLS. TLS connections must match a provided certificate
// authority. This can be used to force client auth.
VerifyIncoming bool
// VerifyIncomingRPC is used to verify the authenticity of incoming RPC
// connections. This means that TCP requests are forbidden, only
// allowing for TLS. TLS connections must match a provided certificate
// authority. This can be used to force client auth.
VerifyIncomingRPC bool
// VerifyIncomingHTTPS is used to verify the authenticity of incoming
// HTTPS connections. This means that TCP requests are forbidden, only
// allowing for TLS. TLS connections must match a provided certificate
// authority. This can be used to force client auth.
VerifyIncomingHTTPS bool
// VerifyOutgoing is used to verify the authenticity of outgoing
// connections. This means that TLS requests are used, and TCP
// requests are not made. TLS connections must match a provided
// certificate authority. This is used to verify authenticity of server
// nodes.
VerifyOutgoing bool
// VerifyServerHostname is used to enable hostname verification of
// servers. This ensures that the certificate presented is valid for
// server.<datacenter>.<domain>. This prevents a compromised client
// from being restarted as a server, and then intercepting request
// traffic as well as being added as a raft peer. This should be
// enabled by default with VerifyOutgoing, but for legacy reasons we
// cannot break existing clients.
VerifyServerHostname bool
// CAFile is a path to a certificate authority file. This is used with
// VerifyIncoming or VerifyOutgoing to verify the TLS connection.
CAFile string
// CAPath is a path to a directory containing certificate authority
// files. This is used with VerifyIncoming or VerifyOutgoing to verify
// the TLS connection.
CAPath string
// CertFile is used to provide a TLS certificate that is used for
// serving TLS connections. Must be provided to serve TLS connections.
CertFile string
// KeyFile is used to provide a TLS key that is used for serving TLS
// connections. Must be provided to serve TLS connections.
KeyFile string
// Node name is the name we use to advertise. Defaults to hostname.
NodeName string
// ServerName is used with the TLS certificate to ensure the name we
// provide matches the certificate
ServerName string
// Domain is the Consul TLD being used. Defaults to "consul."
Domain string
// TLSMinVersion is the minimum accepted TLS version that can be used.
TLSMinVersion string
// CipherSuites is the list of TLS cipher suites to use.
CipherSuites []uint16
// PreferServerCipherSuites specifies whether to prefer the server's
// ciphersuite over the client ciphersuites.
PreferServerCipherSuites bool
// EnableAgentTLSForChecks is used to apply the agent's TLS settings in
// order to configure the HTTP client used for health checks. Enabling
// this allows HTTP checks to present a client certificate and verify
// the server using the same TLS configuration as the agent (CA, cert,
// and key).
EnableAgentTLSForChecks bool
// AutoTLS opts the agent into provisioning agent
// TLS certificates.
AutoTLS bool
}
func tlsVersions() []string {
versions := []string{}
for v := range TLSLookup {
if v != "" {
versions = append(versions, v)
}
}
sort.Strings(versions)
return versions
}
// KeyPair is used to open and parse a certificate and key file
func (c *Config) KeyPair() (*tls.Certificate, error) {
return loadKeyPair(c.CertFile, c.KeyFile)
}
// SpecificDC is used to invoke a static datacenter
// and turns a DCWrapper into a Wrapper type.
func SpecificDC(dc string, tlsWrap DCWrapper) Wrapper {
if tlsWrap == nil {
return nil
}
return func(conn net.Conn) (net.Conn, error) {
return tlsWrap(dc, conn)
}
}
type autoTLS struct {
manualCAPems []string
connectCAPems []string
cert *tls.Certificate
verifyServerHostname bool
}
func (a *autoTLS) caPems() []string {
return append(a.manualCAPems, a.connectCAPems...)
}
type manual struct {
caPems []string
cert *tls.Certificate
}
// Configurator holds a Config and is responsible for generating all the
// *tls.Config necessary for Consul. Except the one in the api package.
type Configurator struct {
// lock synchronizes access to all fields on this struct except for logger and version.
lock sync.RWMutex
base *Config
autoTLS *autoTLS
manual *manual
peerDatacenterUseTLS map[string]bool
caPool *x509.CertPool
// logger is not protected by a lock. It must never be changed after
// Configurator is created.
logger hclog.Logger
// version is increased each time the Configurator is updated. Must be accessed
// using sync/atomic.
version uint64
}
// NewConfigurator creates a new Configurator and sets the provided
// configuration.
func NewConfigurator(config Config, logger hclog.Logger) (*Configurator, error) {
if logger == nil {
logger = hclog.New(&hclog.LoggerOptions{
Level: hclog.Debug,
})
}
c := &Configurator{
logger: logger.Named(logging.TLSUtil),
manual: &manual{},
autoTLS: &autoTLS{},
peerDatacenterUseTLS: map[string]bool{},
}
err := c.Update(config)
if err != nil {
return nil, err
}
return c, nil
}
// CAPems returns the currently loaded CAs in PEM format.
func (c *Configurator) CAPems() []string {
c.lock.RLock()
defer c.lock.RUnlock()
return append(c.manual.caPems, c.autoTLS.caPems()...)
}
// ManualCAPems returns the currently loaded CAs in PEM format.
func (c *Configurator) ManualCAPems() []string {
c.lock.RLock()
defer c.lock.RUnlock()
return c.manual.caPems
}
// Update updates the internal configuration which is used to generate
// *tls.Config.
// This function acquires a write lock because it writes the new config.
func (c *Configurator) Update(config Config) error {
c.lock.Lock()
defer c.lock.Unlock()
cert, err := loadKeyPair(config.CertFile, config.KeyFile)
if err != nil {
return err
}
pems, err := LoadCAs(config.CAFile, config.CAPath)
if err != nil {
return err
}
pool, err := pool(append(pems, c.autoTLS.caPems()...))
if err != nil {
return err
}
if err = validateConfig(config, pool, cert); err != nil {
return err
}
c.base = &config
c.manual.cert = cert
c.manual.caPems = pems
c.caPool = pool
atomic.AddUint64(&c.version, 1)
c.log("Update")
return nil
}
// UpdateAutoTLSCA updates the autoEncrypt.caPems. This is supposed to be called
// from the server in order to be able to accept TLS connections with TLS
// certificates.
// Or it is being called on the client side when CA changes are detected.
func (c *Configurator) UpdateAutoTLSCA(connectCAPems []string) error {
c.lock.Lock()
defer c.lock.Unlock()
pool, err := pool(append(c.manual.caPems, append(c.autoTLS.manualCAPems, connectCAPems...)...))
if err != nil {
return err
}
if err = validateConfig(*c.base, pool, c.manual.cert); err != nil {
return err
}
c.autoTLS.connectCAPems = connectCAPems
c.caPool = pool
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLSCA")
return nil
}
// UpdateAutoTLSCert
func (c *Configurator) UpdateAutoTLSCert(pub, priv string) error {
cert, err := tls.X509KeyPair([]byte(pub), []byte(priv))
if err != nil {
return fmt.Errorf("Failed to load cert/key pair: %v", err)
}
c.lock.Lock()
defer c.lock.Unlock()
c.autoTLS.cert = &cert
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLSCert")
return nil
}
// UpdateAutoTLS sets everything under autoEncrypt. This is being called on the
// client when it received its cert from AutoEncrypt/AutoConfig endpoints.
func (c *Configurator) UpdateAutoTLS(manualCAPems, connectCAPems []string, pub, priv string, verifyServerHostname bool) error {
cert, err := tls.X509KeyPair([]byte(pub), []byte(priv))
if err != nil {
return fmt.Errorf("Failed to load cert/key pair: %v", err)
}
c.lock.Lock()
defer c.lock.Unlock()
pool, err := pool(append(c.manual.caPems, append(manualCAPems, connectCAPems...)...))
if err != nil {
return err
}
c.autoTLS.manualCAPems = manualCAPems
c.autoTLS.connectCAPems = connectCAPems
c.autoTLS.cert = &cert
c.caPool = pool
c.autoTLS.verifyServerHostname = verifyServerHostname
atomic.AddUint64(&c.version, 1)
c.log("UpdateAutoTLS")
return nil
}
func (c *Configurator) UpdateAreaPeerDatacenterUseTLS(peerDatacenter string, useTLS bool) {
c.lock.Lock()
defer c.lock.Unlock()
atomic.AddUint64(&c.version, 1)
c.log("UpdateAreaPeerDatacenterUseTLS")
c.peerDatacenterUseTLS[peerDatacenter] = useTLS
}
func (c *Configurator) getAreaForPeerDatacenterUseTLS(peerDatacenter string) bool {
c.lock.RLock()
defer c.lock.RUnlock()
if v, ok := c.peerDatacenterUseTLS[peerDatacenter]; ok {
return v
}
return true
}
func (c *Configurator) Base() Config {
c.lock.RLock()
defer c.lock.RUnlock()
return *c.base
}
func pool(pems []string) (*x509.CertPool, error) {
pool := x509.NewCertPool()
for _, pem := range pems {
if !pool.AppendCertsFromPEM([]byte(pem)) {
return nil, fmt.Errorf("Couldn't parse PEM %s", pem)
}
}
if len(pool.Subjects()) == 0 {
return nil, nil
}
return pool, nil
}
// validateConfig checks that config is valid and does not conflict with the pool
// or cert.
func validateConfig(config Config, pool *x509.CertPool, cert *tls.Certificate) error {
// Check if a minimum TLS version was set
if config.TLSMinVersion != "" {
if _, ok := TLSLookup[config.TLSMinVersion]; !ok {
return fmt.Errorf("TLSMinVersion: value %s not supported, please specify one of [%s]", config.TLSMinVersion, TLSVersions)
}
}
// Ensure we have a CA if VerifyOutgoing is set
if config.VerifyOutgoing && pool == nil {
return fmt.Errorf("VerifyOutgoing set, and no CA certificate provided!")
}
// Ensure we have a CA and cert if VerifyIncoming is set
if config.anyVerifyIncoming() {
if pool == nil {
// both auto-config and auto-encrypt require verifying the connection from the client to the server for secure
// operation. In order to be able to verify the servers certificate we must have some CA certs already provided.
// Therefore, even though both of those features can push down extra CA certificates which could be used to
// verify incoming connections, we still must consider it an error if none are provided in the initial configuration
// as those features cannot be successfully enabled without providing CA certificates to use those features.
return fmt.Errorf("VerifyIncoming set but no CA certificates were provided")
}
// We will use the auto_encrypt/auto_config cert for TLS in the incoming APIs when available. Therefore the check
// here will ensure that either we enabled one of those two features or a certificate and key were provided manually
if cert == nil && !config.AutoTLS {
return fmt.Errorf("VerifyIncoming requires either a Cert and Key pair in the configuration file, or auto_encrypt/auto_config be enabled")
}
}
return nil
}
func (c Config) anyVerifyIncoming() bool {
return c.baseVerifyIncoming() || c.VerifyIncomingRPC || c.VerifyIncomingHTTPS
}
func (c Config) verifyIncomingRPC() bool {
return c.baseVerifyIncoming() || c.VerifyIncomingRPC
}
func (c Config) verifyIncomingHTTPS() bool {
return c.baseVerifyIncoming() || c.VerifyIncomingHTTPS
}
func (c *Config) baseVerifyIncoming() bool {
return c.VerifyIncoming
}
func loadKeyPair(certFile, keyFile string) (*tls.Certificate, error) {
if certFile == "" || keyFile == "" {
return nil, nil
}
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return nil, fmt.Errorf("Failed to load cert/key pair: %v", err)
}
return &cert, nil
}
func LoadCAs(caFile, caPath string) ([]string, error) {
if caFile == "" && caPath == "" {
return nil, nil
}
pems := []string{}
readFn := func(path string) error {
pem, err := ioutil.ReadFile(path)
if err != nil {
return fmt.Errorf("Error loading from %s: %s", path, err)
}
pems = append(pems, string(pem))
return nil
}
walkFn := func(path string, info os.FileInfo, err error) error {
if err != nil {
return err
}
if !info.IsDir() {
if err := readFn(path); err != nil {
return err
}
}
return nil
}
if caFile != "" {
err := readFn(caFile)
if err != nil {
return pems, err
}
} else if caPath != "" {
err := filepath.Walk(caPath, walkFn)
if err != nil {
return pems, err
}
if len(pems) == 0 {
return pems, fmt.Errorf("Error loading from CAPath: no CAs found")
}
}
return pems, nil
}
// commonTLSConfig generates a *tls.Config from the base configuration the
// Configurator has. It accepts an additional flag in case a config is needed
// for incoming TLS connections.
// This function acquires a read lock because it reads from the config.
func (c *Configurator) commonTLSConfig(verifyIncoming bool) *tls.Config {
// this needs to be outside of RLock because it acquires an RLock itself
verifyServerHostname := c.VerifyServerHostname()
c.lock.RLock()
defer c.lock.RUnlock()
tlsConfig := &tls.Config{
InsecureSkipVerify: !verifyServerHostname,
}
// Set the cipher suites
if len(c.base.CipherSuites) != 0 {
tlsConfig.CipherSuites = c.base.CipherSuites
}
tlsConfig.PreferServerCipherSuites = c.base.PreferServerCipherSuites
// GetCertificate is used when acting as a server and responding to
// client requests. Default to the manually configured cert, but allow
// autoEncrypt cert too so that a client can encrypt incoming
// connections without having a manual cert configured.
tlsConfig.GetCertificate = func(*tls.ClientHelloInfo) (*tls.Certificate, error) {
return c.Cert(), nil
}
// GetClientCertificate is used when acting as a client and responding
// to a server requesting a certificate. Return the autoEncrypt certificate
// if possible, otherwise default to the manually provisioned one.
tlsConfig.GetClientCertificate = func(*tls.CertificateRequestInfo) (*tls.Certificate, error) {
cert := c.autoTLS.cert
if cert == nil {
cert = c.manual.cert
}
if cert == nil {
// the return value MUST not be nil but an empty certificate will be
// treated the same as having no client certificate
cert = &tls.Certificate{}
}
return cert, nil
}
tlsConfig.ClientCAs = c.caPool
tlsConfig.RootCAs = c.caPool
// This is possible because TLSLookup also contains "" with golang's
// default (tls10). And because the initial check makes sure the
// version correctly matches.
tlsConfig.MinVersion = TLSLookup[c.base.TLSMinVersion]
// Set ClientAuth if necessary
if verifyIncoming {
tlsConfig.ClientAuth = tls.RequireAndVerifyClientCert
}
return tlsConfig
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) Cert() *tls.Certificate {
c.lock.RLock()
defer c.lock.RUnlock()
cert := c.manual.cert
if cert == nil {
cert = c.autoTLS.cert
}
return cert
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) VerifyIncomingRPC() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.verifyIncomingRPC()
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) outgoingRPCTLSDisabled() bool {
c.lock.RLock()
defer c.lock.RUnlock()
// if AutoEncrypt enabled, always use TLS
if c.base.AutoTLS {
return false
}
// if CAs are provided or VerifyOutgoing is set, use TLS
if c.base.VerifyOutgoing {
return false
}
return true
}
func (c *Configurator) MutualTLSCapable() bool {
return c.mutualTLSCapable()
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) mutualTLSCapable() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.caPool != nil && (c.autoTLS.cert != nil || c.manual.cert != nil)
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) verifyOutgoing() bool {
c.lock.RLock()
defer c.lock.RUnlock()
// If AutoEncryptTLS is enabled and there is a CA, then verify
// outgoing.
if c.base.AutoTLS && c.caPool != nil {
return true
}
return c.base.VerifyOutgoing
}
func (c *Configurator) ServerSNI(dc, nodeName string) string {
// Strip the trailing '.' from the domain if any
domain := strings.TrimSuffix(c.domain(), ".")
if nodeName == "" || nodeName == "*" {
return "server." + dc + "." + domain
}
return nodeName + ".server." + dc + "." + domain
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) domain() string {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.Domain
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) verifyIncomingRPC() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.verifyIncomingRPC()
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) verifyIncomingHTTPS() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.verifyIncomingHTTPS()
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) enableAgentTLSForChecks() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.EnableAgentTLSForChecks
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) serverNameOrNodeName() string {
c.lock.RLock()
defer c.lock.RUnlock()
if c.base.ServerName != "" {
return c.base.ServerName
}
return c.base.NodeName
}
// This function acquires a read lock because it reads from the config.
func (c *Configurator) VerifyServerHostname() bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.base.VerifyServerHostname || c.autoTLS.verifyServerHostname
}
// IncomingGRPCConfig generates a *tls.Config for incoming GRPC connections.
func (c *Configurator) IncomingGRPCConfig() *tls.Config {
c.log("IncomingGRPCConfig")
// false has the effect that this config doesn't require a client cert
// verification. This is because there is no verify_incoming_grpc
// configuration option. And using verify_incoming would be backwards
// incompatible, because even if it was set before, it didn't have an
// effect on the grpc server.
config := c.commonTLSConfig(false)
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingGRPCConfig(), nil
}
return config
}
// IncomingRPCConfig generates a *tls.Config for incoming RPC connections.
func (c *Configurator) IncomingRPCConfig() *tls.Config {
c.log("IncomingRPCConfig")
config := c.commonTLSConfig(c.verifyIncomingRPC())
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingRPCConfig(), nil
}
return config
}
// IncomingALPNRPCConfig generates a *tls.Config for incoming RPC connections
// directly using TLS with ALPN instead of the older byte-prefixed protocol.
func (c *Configurator) IncomingALPNRPCConfig(alpnProtos []string) *tls.Config {
c.log("IncomingALPNRPCConfig")
// Since the ALPN-RPC variation is indirectly exposed to the internet via
// mesh gateways we force mTLS and full server name verification.
config := c.commonTLSConfig(true)
config.InsecureSkipVerify = false
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingALPNRPCConfig(alpnProtos), nil
}
config.NextProtos = alpnProtos
return config
}
// IncomingInsecureRPCConfig means that it doesn't verify incoming even thought
// it might have been configured. This is only supposed to be used by the
// servers for the insecure RPC server. At the time of writing only the
// AutoEncrypt.Sign call is supported on that server. And it might be the only
// usecase ever.
func (c *Configurator) IncomingInsecureRPCConfig() *tls.Config {
c.log("IncomingInsecureRPCConfig")
config := c.commonTLSConfig(false)
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingInsecureRPCConfig(), nil
}
return config
}
// IncomingHTTPSConfig generates a *tls.Config for incoming HTTPS connections.
func (c *Configurator) IncomingHTTPSConfig() *tls.Config {
c.log("IncomingHTTPSConfig")
config := c.commonTLSConfig(c.verifyIncomingHTTPS())
config.NextProtos = []string{"h2", "http/1.1"}
config.GetConfigForClient = func(*tls.ClientHelloInfo) (*tls.Config, error) {
return c.IncomingHTTPSConfig(), nil
}
return config
}
// OutgoingTLSConfigForCheck generates a *tls.Config for outgoing TLS connections
// for checks. This function is separated because there is an extra flag to
// consider for checks. EnableAgentTLSForChecks and InsecureSkipVerify has to
// be checked for checks.
func (c *Configurator) OutgoingTLSConfigForCheck(skipVerify bool, serverName string) *tls.Config {
c.log("OutgoingTLSConfigForCheck")
if serverName == "" {
serverName = c.serverNameOrNodeName()
}
if !c.enableAgentTLSForChecks() {
return &tls.Config{
InsecureSkipVerify: skipVerify,
ServerName: serverName,
}
}
config := c.commonTLSConfig(false)
config.InsecureSkipVerify = skipVerify
config.ServerName = serverName
return config
}
// OutgoingRPCConfig generates a *tls.Config for outgoing RPC connections. If
// there is a CA or VerifyOutgoing is set, a *tls.Config will be provided,
// otherwise we assume that no TLS should be used.
func (c *Configurator) OutgoingRPCConfig() *tls.Config {
c.log("OutgoingRPCConfig")
if c.outgoingRPCTLSDisabled() {
return nil
}
return c.commonTLSConfig(false)
}
// OutgoingALPNRPCConfig generates a *tls.Config for outgoing RPC connections
// directly using TLS with ALPN instead of the older byte-prefixed protocol.
// If there is a CA or VerifyOutgoing is set, a *tls.Config will be provided,
// otherwise we assume that no TLS should be used which completely disables the
// ALPN variation.
func (c *Configurator) OutgoingALPNRPCConfig() *tls.Config {
c.log("OutgoingALPNRPCConfig")
if !c.mutualTLSCapable() {
return nil // ultimately this will hard-fail as TLS is required
}
// Since the ALPN-RPC variation is indirectly exposed to the internet via
// mesh gateways we force mTLS and full server name verification.
config := c.commonTLSConfig(true)
config.InsecureSkipVerify = false
return config
}
// OutgoingRPCWrapper wraps the result of OutgoingRPCConfig in a DCWrapper. It
// decides if verify server hostname should be used.
func (c *Configurator) OutgoingRPCWrapper() DCWrapper {
c.log("OutgoingRPCWrapper")
// Generate the wrapper based on dc
return func(dc string, conn net.Conn) (net.Conn, error) {
if c.UseTLS(dc) {
return c.wrapTLSClient(dc, conn)
}
return conn, nil
}
}
func (c *Configurator) UseTLS(dc string) bool {
return !c.outgoingRPCTLSDisabled() && c.getAreaForPeerDatacenterUseTLS(dc)
}
// OutgoingALPNRPCWrapper wraps the result of OutgoingALPNRPCConfig in an
// ALPNWrapper. It configures all of the negotiation plumbing.
func (c *Configurator) OutgoingALPNRPCWrapper() ALPNWrapper {
c.log("OutgoingALPNRPCWrapper")
if !c.mutualTLSCapable() {
return nil
}
return func(dc, nodeName, alpnProto string, conn net.Conn) (net.Conn, error) {
return c.wrapALPNTLSClient(dc, nodeName, alpnProto, conn)
}
}
// AutoEncryptCertNotAfter returns NotAfter from the auto_encrypt cert. In case
// there is no cert, it will return a time in the past.
func (c *Configurator) AutoEncryptCertNotAfter() time.Time {
c.lock.RLock()
defer c.lock.RUnlock()
tlsCert := c.autoTLS.cert
if tlsCert == nil || tlsCert.Certificate == nil {
return time.Now().AddDate(0, 0, -1)
}
cert, err := x509.ParseCertificate(tlsCert.Certificate[0])
if err != nil {
return time.Now().AddDate(0, 0, -1)
}
return cert.NotAfter
}
// AutoEncryptCertExpired returns if the auto_encrypt cert is expired.
func (c *Configurator) AutoEncryptCertExpired() bool {
return c.AutoEncryptCertNotAfter().Before(time.Now())
}
func (c *Configurator) log(name string) {
if c.logger != nil && c.logger.IsTrace() {
c.logger.Trace(name, "version", atomic.LoadUint64(&c.version))
}
}
// Wrap a net.Conn into a client tls connection, performing any
// additional verification as needed.
//
// As of go 1.3, crypto/tls only supports either doing no certificate
// verification, or doing full verification including of the peer's
// DNS name. For consul, we want to validate that the certificate is
// signed by a known CA, but because consul doesn't use DNS names for
// node names, we don't verify the certificate DNS names. Since go 1.3
// no longer supports this mode of operation, we have to do it
// manually.
func (c *Configurator) wrapTLSClient(dc string, conn net.Conn) (net.Conn, error) {
config := c.OutgoingRPCConfig()
verifyServerHostname := c.VerifyServerHostname()
verifyOutgoing := c.verifyOutgoing()
domain := c.domain()
if verifyServerHostname {
// Strip the trailing '.' from the domain if any
domain = strings.TrimSuffix(domain, ".")
config.ServerName = "server." + dc + "." + domain
}
tlsConn := tls.Client(conn, config)
// If crypto/tls is doing verification, there's no need to do
// our own.
if !config.InsecureSkipVerify {
return tlsConn, nil
}
// If verification is not turned on, don't do it.
if !verifyOutgoing {
return tlsConn, nil
}
err := tlsConn.Handshake()
if err != nil {
tlsConn.Close()
return nil, err
}
// The following is lightly-modified from the doFullHandshake
// method in crypto/tls's handshake_client.go.
opts := x509.VerifyOptions{
Roots: config.RootCAs,
CurrentTime: time.Now(),
DNSName: "",
Intermediates: x509.NewCertPool(),
}
certs := tlsConn.ConnectionState().PeerCertificates
for i, cert := range certs {
if i == 0 {
continue
}
opts.Intermediates.AddCert(cert)
}
_, err = certs[0].Verify(opts)
if err != nil {
tlsConn.Close()
return nil, err
}
return tlsConn, err
}
// Wrap a net.Conn into a client tls connection suitable for secure ALPN-RPC,
// performing any additional verification as needed.
func (c *Configurator) wrapALPNTLSClient(dc, nodeName, alpnProto string, conn net.Conn) (net.Conn, error) {
if dc == "" {
return nil, fmt.Errorf("cannot dial using ALPN-RPC without a target datacenter")
} else if nodeName == "" {
return nil, fmt.Errorf("cannot dial using ALPN-RPC without a target node")
} else if alpnProto == "" {
return nil, fmt.Errorf("cannot dial using ALPN-RPC without a target alpn protocol")
}
config := c.OutgoingALPNRPCConfig()
if config == nil {
return nil, fmt.Errorf("cannot dial via a mesh gateway when outgoing TLS is disabled")
}
// Since the ALPN-RPC variation is indirectly exposed to the internet via
// mesh gateways we force mTLS and full hostname validation (forcing
// verify_server_hostname and verify_outgoing to be effectively true).
config.ServerName = c.ServerSNI(dc, nodeName)
config.NextProtos = []string{alpnProto}
tlsConn := tls.Client(conn, config)
// NOTE: For this handshake to succeed the server must have key material
// for either "<nodename>.server.<datacenter>.<domain>" or
// "*.server.<datacenter>.<domain>" in addition to the
// "server.<datacenter>.<domain>" required for standard TLS'd RPC.
if err := tlsConn.Handshake(); err != nil {
tlsConn.Close()
return nil, err
}
return tlsConn, nil
}
// ParseCiphers parse ciphersuites from the comma-separated string into
// recognized slice
func ParseCiphers(cipherStr string) ([]uint16, error) {
suites := []uint16{}
cipherStr = strings.TrimSpace(cipherStr)
if cipherStr == "" {
return []uint16{}, nil
}
ciphers := strings.Split(cipherStr, ",")
// Note: this needs to be kept up to date with the cipherMap in CipherString
cipherMap := map[string]uint16{
"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA": tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256": tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256": tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA": tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384": tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA": tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256": tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256": tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA": tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384": tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
}
for _, cipher := range ciphers {
if v, ok := cipherMap[cipher]; ok {
suites = append(suites, v)
} else {
return suites, fmt.Errorf("unsupported cipher %q", cipher)
}
}
return suites, nil
}
// CipherString performs the inverse operation of ParseCiphers
func CipherString(ciphers []uint16) (string, error) {
// Note: this needs to be kept up to date with the cipherMap in ParseCiphers
cipherMap := map[uint16]string{
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256: "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256",
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256: "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256",
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
}
cipherStrings := make([]string, len(ciphers))
for i, cipher := range ciphers {
if v, ok := cipherMap[cipher]; ok {
cipherStrings[i] = v
} else {
return "", fmt.Errorf("unsupported cipher %d", cipher)
}
}
return strings.Join(cipherStrings, ","), nil
}