mirror of https://github.com/hashicorp/consul
554 lines
16 KiB
Go
554 lines
16 KiB
Go
package consul
|
|
|
|
import (
|
|
"crypto/tls"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/armon/go-metrics"
|
|
"github.com/hashicorp/consul/agent/consul/state"
|
|
"github.com/hashicorp/consul/agent/metadata"
|
|
"github.com/hashicorp/consul/agent/pool"
|
|
"github.com/hashicorp/consul/agent/structs"
|
|
"github.com/hashicorp/consul/lib"
|
|
memdb "github.com/hashicorp/go-memdb"
|
|
"github.com/hashicorp/go-raftchunking"
|
|
"github.com/hashicorp/memberlist"
|
|
msgpackrpc "github.com/hashicorp/net-rpc-msgpackrpc"
|
|
"github.com/hashicorp/raft"
|
|
"github.com/hashicorp/yamux"
|
|
)
|
|
|
|
const (
|
|
// maxQueryTime is used to bound the limit of a blocking query
|
|
maxQueryTime = 600 * time.Second
|
|
|
|
// defaultQueryTime is the amount of time we block waiting for a change
|
|
// if no time is specified. Previously we would wait the maxQueryTime.
|
|
defaultQueryTime = 300 * time.Second
|
|
|
|
// jitterFraction is a the limit to the amount of jitter we apply
|
|
// to a user specified MaxQueryTime. We divide the specified time by
|
|
// the fraction. So 16 == 6.25% limit of jitter. This same fraction
|
|
// is applied to the RPCHoldTimeout
|
|
jitterFraction = 16
|
|
|
|
// Warn if the Raft command is larger than this.
|
|
// If it's over 1MB something is probably being abusive.
|
|
raftWarnSize = 1024 * 1024
|
|
|
|
// enqueueLimit caps how long we will wait to enqueue
|
|
// a new Raft command. Something is probably wrong if this
|
|
// value is ever reached. However, it prevents us from blocking
|
|
// the requesting goroutine forever.
|
|
enqueueLimit = 30 * time.Second
|
|
)
|
|
|
|
var (
|
|
ErrChunkingResubmit = errors.New("please resubmit call for rechunking")
|
|
)
|
|
|
|
// listen is used to listen for incoming RPC connections
|
|
func (s *Server) listen(listener net.Listener) {
|
|
for {
|
|
// Accept a connection
|
|
conn, err := listener.Accept()
|
|
if err != nil {
|
|
if s.shutdown {
|
|
return
|
|
}
|
|
s.logger.Printf("[ERR] consul.rpc: failed to accept RPC conn: %v", err)
|
|
continue
|
|
}
|
|
|
|
go s.handleConn(conn, false)
|
|
metrics.IncrCounter([]string{"rpc", "accept_conn"}, 1)
|
|
}
|
|
}
|
|
|
|
// logConn is a wrapper around memberlist's LogConn so that we format references
|
|
// to "from" addresses in a consistent way. This is just a shorter name.
|
|
func logConn(conn net.Conn) string {
|
|
return memberlist.LogConn(conn)
|
|
}
|
|
|
|
// handleConn is used to determine if this is a Raft or
|
|
// Consul type RPC connection and invoke the correct handler
|
|
func (s *Server) handleConn(conn net.Conn, isTLS bool) {
|
|
// Read a single byte
|
|
buf := make([]byte, 1)
|
|
if _, err := conn.Read(buf); err != nil {
|
|
if err != io.EOF {
|
|
s.logger.Printf("[ERR] consul.rpc: failed to read byte: %v %s", err, logConn(conn))
|
|
}
|
|
conn.Close()
|
|
return
|
|
}
|
|
typ := pool.RPCType(buf[0])
|
|
|
|
// Enforce TLS if VerifyIncoming is set
|
|
if s.tlsConfigurator.VerifyIncomingRPC() && !isTLS && typ != pool.RPCTLS && typ != pool.RPCTLSInsecure {
|
|
s.logger.Printf("[WARN] consul.rpc: Non-TLS connection attempted with VerifyIncoming set %s", logConn(conn))
|
|
conn.Close()
|
|
return
|
|
}
|
|
|
|
// Switch on the byte
|
|
switch typ {
|
|
case pool.RPCConsul:
|
|
s.handleConsulConn(conn)
|
|
|
|
case pool.RPCRaft:
|
|
metrics.IncrCounter([]string{"rpc", "raft_handoff"}, 1)
|
|
s.raftLayer.Handoff(conn)
|
|
|
|
case pool.RPCTLS:
|
|
conn = tls.Server(conn, s.tlsConfigurator.IncomingRPCConfig())
|
|
s.handleConn(conn, true)
|
|
|
|
case pool.RPCMultiplexV2:
|
|
s.handleMultiplexV2(conn)
|
|
|
|
case pool.RPCSnapshot:
|
|
s.handleSnapshotConn(conn)
|
|
|
|
case pool.RPCTLSInsecure:
|
|
conn = tls.Server(conn, s.tlsConfigurator.IncomingInsecureRPCConfig())
|
|
s.handleInsecureConn(conn)
|
|
|
|
default:
|
|
if !s.handleEnterpriseRPCConn(typ, conn, isTLS) {
|
|
s.logger.Printf("[ERR] consul.rpc: unrecognized RPC byte: %v %s", typ, logConn(conn))
|
|
conn.Close()
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleMultiplexV2 is used to multiplex a single incoming connection
|
|
// using the Yamux multiplexer
|
|
func (s *Server) handleMultiplexV2(conn net.Conn) {
|
|
defer conn.Close()
|
|
conf := yamux.DefaultConfig()
|
|
conf.LogOutput = s.config.LogOutput
|
|
server, _ := yamux.Server(conn, conf)
|
|
for {
|
|
sub, err := server.Accept()
|
|
if err != nil {
|
|
if err != io.EOF {
|
|
s.logger.Printf("[ERR] consul.rpc: multiplex conn accept failed: %v %s", err, logConn(conn))
|
|
}
|
|
return
|
|
}
|
|
go s.handleConsulConn(sub)
|
|
}
|
|
}
|
|
|
|
// handleConsulConn is used to service a single Consul RPC connection
|
|
func (s *Server) handleConsulConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
rpcCodec := msgpackrpc.NewServerCodec(conn)
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := s.rpcServer.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.logger.Printf("[ERR] consul.rpc: RPC error: %v %s", err, logConn(conn))
|
|
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleInsecureConsulConn is used to service a single Consul INSECURERPC connection
|
|
func (s *Server) handleInsecureConn(conn net.Conn) {
|
|
defer conn.Close()
|
|
rpcCodec := msgpackrpc.NewServerCodec(conn)
|
|
for {
|
|
select {
|
|
case <-s.shutdownCh:
|
|
return
|
|
default:
|
|
}
|
|
|
|
if err := s.insecureRPCServer.ServeRequest(rpcCodec); err != nil {
|
|
if err != io.EOF && !strings.Contains(err.Error(), "closed") {
|
|
s.logger.Printf("[ERR] consul.rpc: INSECURERPC error: %v %s", err, logConn(conn))
|
|
metrics.IncrCounter([]string{"rpc", "request_error"}, 1)
|
|
}
|
|
return
|
|
}
|
|
metrics.IncrCounter([]string{"rpc", "request"}, 1)
|
|
}
|
|
}
|
|
|
|
// handleSnapshotConn is used to dispatch snapshot saves and restores, which
|
|
// stream so don't use the normal RPC mechanism.
|
|
func (s *Server) handleSnapshotConn(conn net.Conn) {
|
|
go func() {
|
|
defer conn.Close()
|
|
if err := s.handleSnapshotRequest(conn); err != nil {
|
|
s.logger.Printf("[ERR] consul.rpc: Snapshot RPC error: %v %s", err, logConn(conn))
|
|
}
|
|
}()
|
|
}
|
|
|
|
// canRetry returns true if the given situation is safe for a retry.
|
|
func canRetry(args interface{}, err error) bool {
|
|
// No leader errors are always safe to retry since no state could have
|
|
// been changed.
|
|
if structs.IsErrNoLeader(err) {
|
|
return true
|
|
}
|
|
|
|
// If we are chunking and it doesn't seem to have completed, try again
|
|
intErr, ok := args.(error)
|
|
if ok && strings.Contains(intErr.Error(), ErrChunkingResubmit.Error()) {
|
|
return true
|
|
}
|
|
|
|
// Reads are safe to retry for stream errors, such as if a server was
|
|
// being shut down.
|
|
info, ok := args.(structs.RPCInfo)
|
|
if ok && info.IsRead() && lib.IsErrEOF(err) {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// forward is used to forward to a remote DC or to forward to the local leader
|
|
// Returns a bool of if forwarding was performed, as well as any error
|
|
func (s *Server) forward(method string, info structs.RPCInfo, args interface{}, reply interface{}) (bool, error) {
|
|
var firstCheck time.Time
|
|
|
|
// Handle DC forwarding
|
|
dc := info.RequestDatacenter()
|
|
if dc != s.config.Datacenter {
|
|
err := s.forwardDC(method, dc, args, reply)
|
|
return true, err
|
|
}
|
|
|
|
// Check if we can allow a stale read, ensure our local DB is initialized
|
|
if info.IsRead() && info.AllowStaleRead() && !s.raft.LastContact().IsZero() {
|
|
return false, nil
|
|
}
|
|
|
|
CHECK_LEADER:
|
|
// Fail fast if we are in the process of leaving
|
|
select {
|
|
case <-s.leaveCh:
|
|
return true, structs.ErrNoLeader
|
|
default:
|
|
}
|
|
|
|
// Find the leader
|
|
isLeader, leader := s.getLeader()
|
|
|
|
// Handle the case we are the leader
|
|
if isLeader {
|
|
return false, nil
|
|
}
|
|
|
|
// Handle the case of a known leader
|
|
rpcErr := structs.ErrNoLeader
|
|
if leader != nil {
|
|
rpcErr = s.connPool.RPC(s.config.Datacenter, leader.Addr,
|
|
leader.Version, method, leader.UseTLS, args, reply)
|
|
if rpcErr != nil && canRetry(info, rpcErr) {
|
|
goto RETRY
|
|
}
|
|
return true, rpcErr
|
|
}
|
|
|
|
RETRY:
|
|
// Gate the request until there is a leader
|
|
if firstCheck.IsZero() {
|
|
firstCheck = time.Now()
|
|
}
|
|
if time.Since(firstCheck) < s.config.RPCHoldTimeout {
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction)
|
|
select {
|
|
case <-time.After(jitter):
|
|
goto CHECK_LEADER
|
|
case <-s.leaveCh:
|
|
case <-s.shutdownCh:
|
|
}
|
|
}
|
|
|
|
// No leader found and hold time exceeded
|
|
return true, rpcErr
|
|
}
|
|
|
|
// getLeader returns if the current node is the leader, and if not then it
|
|
// returns the leader which is potentially nil if the cluster has not yet
|
|
// elected a leader.
|
|
func (s *Server) getLeader() (bool, *metadata.Server) {
|
|
// Check if we are the leader
|
|
if s.IsLeader() {
|
|
return true, nil
|
|
}
|
|
|
|
// Get the leader
|
|
leader := s.raft.Leader()
|
|
if leader == "" {
|
|
return false, nil
|
|
}
|
|
|
|
// Lookup the server
|
|
server := s.serverLookup.Server(leader)
|
|
|
|
// Server could be nil
|
|
return false, server
|
|
}
|
|
|
|
// forwardDC is used to forward an RPC call to a remote DC, or fail if no servers
|
|
func (s *Server) forwardDC(method, dc string, args interface{}, reply interface{}) error {
|
|
manager, server, ok := s.router.FindRoute(dc)
|
|
if !ok {
|
|
s.logger.Printf("[WARN] consul.rpc: RPC request for DC %q, no path found", dc)
|
|
return structs.ErrNoDCPath
|
|
}
|
|
|
|
metrics.IncrCounterWithLabels([]string{"rpc", "cross-dc"}, 1,
|
|
[]metrics.Label{{Name: "datacenter", Value: dc}})
|
|
if err := s.connPool.RPC(dc, server.Addr, server.Version, method, server.UseTLS, args, reply); err != nil {
|
|
manager.NotifyFailedServer(server)
|
|
s.logger.Printf("[ERR] consul: RPC failed to server %s in DC %q: %v", server.Addr, dc, err)
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// globalRPC is used to forward an RPC request to one server in each datacenter.
|
|
// This will only error for RPC-related errors. Otherwise, application-level
|
|
// errors can be sent in the response objects.
|
|
func (s *Server) globalRPC(method string, args interface{},
|
|
reply structs.CompoundResponse) error {
|
|
|
|
// Make a new request into each datacenter
|
|
dcs := s.router.GetDatacenters()
|
|
|
|
replies, total := 0, len(dcs)
|
|
errorCh := make(chan error, total)
|
|
respCh := make(chan interface{}, total)
|
|
|
|
for _, dc := range dcs {
|
|
go func(dc string) {
|
|
rr := reply.New()
|
|
if err := s.forwardDC(method, dc, args, &rr); err != nil {
|
|
errorCh <- err
|
|
return
|
|
}
|
|
respCh <- rr
|
|
}(dc)
|
|
}
|
|
|
|
for replies < total {
|
|
select {
|
|
case err := <-errorCh:
|
|
return err
|
|
case rr := <-respCh:
|
|
reply.Add(rr)
|
|
replies++
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// raftApply is used to encode a message, run it through raft, and return
|
|
// the FSM response along with any errors
|
|
func (s *Server) raftApply(t structs.MessageType, msg interface{}) (interface{}, error) {
|
|
buf, err := structs.Encode(t, msg)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("Failed to encode request: %v", err)
|
|
}
|
|
|
|
// Warn if the command is very large
|
|
if n := len(buf); n > raftWarnSize {
|
|
s.logger.Printf("[WARN] consul: Attempting to apply large raft entry (%d bytes)", n)
|
|
}
|
|
|
|
var chunked bool
|
|
var future raft.ApplyFuture
|
|
switch {
|
|
case len(buf) <= raft.SuggestedMaxDataSize || t != structs.KVSRequestType:
|
|
future = s.raft.Apply(buf, enqueueLimit)
|
|
default:
|
|
chunked = true
|
|
future = raftchunking.ChunkingApply(buf, nil, enqueueLimit, s.raft.ApplyLog)
|
|
}
|
|
|
|
if err := future.Error(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
resp := future.Response()
|
|
|
|
if chunked {
|
|
// In this case we didn't apply all chunks successfully, possibly due
|
|
// to a term change; resubmit
|
|
if resp == nil {
|
|
// This returns the error in the interface because the raft library
|
|
// returns errors from the FSM via the future, not via err from the
|
|
// apply function. Downstream client code expects to see any error
|
|
// from the FSM (as opposed to the apply itself) and decide whether
|
|
// it can retry in the future's response.
|
|
return ErrChunkingResubmit, nil
|
|
}
|
|
// We expect that this conversion should always work
|
|
chunkedSuccess, ok := resp.(raftchunking.ChunkingSuccess)
|
|
if !ok {
|
|
return nil, errors.New("unknown type of response back from chunking FSM")
|
|
}
|
|
// Return the inner wrapped response
|
|
return chunkedSuccess.Response, nil
|
|
}
|
|
|
|
return resp, nil
|
|
}
|
|
|
|
// queryFn is used to perform a query operation. If a re-query is needed, the
|
|
// passed-in watch set will be used to block for changes. The passed-in state
|
|
// store should be used (vs. calling fsm.State()) since the given state store
|
|
// will be correctly watched for changes if the state store is restored from
|
|
// a snapshot.
|
|
type queryFn func(memdb.WatchSet, *state.Store) error
|
|
|
|
// blockingQuery is used to process a potentially blocking query operation.
|
|
func (s *Server) blockingQuery(queryOpts *structs.QueryOptions, queryMeta *structs.QueryMeta,
|
|
fn queryFn) error {
|
|
var timeout *time.Timer
|
|
|
|
// Fast path right to the non-blocking query.
|
|
if queryOpts.MinQueryIndex == 0 {
|
|
goto RUN_QUERY
|
|
}
|
|
|
|
// Restrict the max query time, and ensure there is always one.
|
|
if queryOpts.MaxQueryTime > maxQueryTime {
|
|
queryOpts.MaxQueryTime = maxQueryTime
|
|
} else if queryOpts.MaxQueryTime <= 0 {
|
|
queryOpts.MaxQueryTime = defaultQueryTime
|
|
}
|
|
|
|
// Apply a small amount of jitter to the request.
|
|
queryOpts.MaxQueryTime += lib.RandomStagger(queryOpts.MaxQueryTime / jitterFraction)
|
|
|
|
// Setup a query timeout.
|
|
timeout = time.NewTimer(queryOpts.MaxQueryTime)
|
|
defer timeout.Stop()
|
|
|
|
RUN_QUERY:
|
|
// Update the query metadata.
|
|
s.setQueryMeta(queryMeta)
|
|
|
|
// If the read must be consistent we verify that we are still the leader.
|
|
if queryOpts.RequireConsistent {
|
|
if err := s.consistentRead(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Run the query.
|
|
metrics.IncrCounter([]string{"rpc", "query"}, 1)
|
|
|
|
// Operate on a consistent set of state. This makes sure that the
|
|
// abandon channel goes with the state that the caller is using to
|
|
// build watches.
|
|
state := s.fsm.State()
|
|
|
|
// We can skip all watch tracking if this isn't a blocking query.
|
|
var ws memdb.WatchSet
|
|
if queryOpts.MinQueryIndex > 0 {
|
|
ws = memdb.NewWatchSet()
|
|
|
|
// This channel will be closed if a snapshot is restored and the
|
|
// whole state store is abandoned.
|
|
ws.Add(state.AbandonCh())
|
|
}
|
|
|
|
// Block up to the timeout if we didn't see anything fresh.
|
|
err := fn(ws, state)
|
|
// Note we check queryOpts.MinQueryIndex is greater than zero to determine if
|
|
// blocking was requested by client, NOT meta.Index since the state function
|
|
// might return zero if something is not initialized and care wasn't taken to
|
|
// handle that special case (in practice this happened a lot so fixing it
|
|
// systematically here beats trying to remember to add zero checks in every
|
|
// state method). We also need to ensure that unless there is an error, we
|
|
// return an index > 0 otherwise the client will never block and burn CPU and
|
|
// requests.
|
|
if err == nil && queryMeta.Index < 1 {
|
|
queryMeta.Index = 1
|
|
}
|
|
if err == nil && queryOpts.MinQueryIndex > 0 && queryMeta.Index <= queryOpts.MinQueryIndex {
|
|
if expired := ws.Watch(timeout.C); !expired {
|
|
// If a restore may have woken us up then bail out from
|
|
// the query immediately. This is slightly race-ey since
|
|
// this might have been interrupted for other reasons,
|
|
// but it's OK to kick it back to the caller in either
|
|
// case.
|
|
select {
|
|
case <-state.AbandonCh():
|
|
default:
|
|
goto RUN_QUERY
|
|
}
|
|
}
|
|
}
|
|
return err
|
|
}
|
|
|
|
// setQueryMeta is used to populate the QueryMeta data for an RPC call
|
|
func (s *Server) setQueryMeta(m *structs.QueryMeta) {
|
|
if s.IsLeader() {
|
|
m.LastContact = 0
|
|
m.KnownLeader = true
|
|
} else {
|
|
m.LastContact = time.Since(s.raft.LastContact())
|
|
m.KnownLeader = (s.raft.Leader() != "")
|
|
}
|
|
}
|
|
|
|
// consistentRead is used to ensure we do not perform a stale
|
|
// read. This is done by verifying leadership before the read.
|
|
func (s *Server) consistentRead() error {
|
|
defer metrics.MeasureSince([]string{"rpc", "consistentRead"}, time.Now())
|
|
future := s.raft.VerifyLeader()
|
|
if err := future.Error(); err != nil {
|
|
return err //fail fast if leader verification fails
|
|
}
|
|
// poll consistent read readiness, wait for up to RPCHoldTimeout milliseconds
|
|
if s.isReadyForConsistentReads() {
|
|
return nil
|
|
}
|
|
jitter := lib.RandomStagger(s.config.RPCHoldTimeout / jitterFraction)
|
|
deadline := time.Now().Add(s.config.RPCHoldTimeout)
|
|
|
|
for time.Now().Before(deadline) {
|
|
|
|
select {
|
|
case <-time.After(jitter):
|
|
// Drop through and check before we loop again.
|
|
|
|
case <-s.shutdownCh:
|
|
return fmt.Errorf("shutdown waiting for leader")
|
|
}
|
|
|
|
if s.isReadyForConsistentReads() {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
return structs.ErrNotReadyForConsistentReads
|
|
}
|