mirror of https://github.com/hashicorp/consul
327 lines
8.2 KiB
Go
327 lines
8.2 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package s2k implements the various OpenPGP string-to-key transforms as
|
|
// specified in RFC 4800 section 3.7.1.
|
|
package s2k // import "github.com/keybase/go-crypto/openpgp/s2k"
|
|
|
|
import (
|
|
"crypto"
|
|
"hash"
|
|
"io"
|
|
"strconv"
|
|
|
|
"github.com/keybase/go-crypto/openpgp/errors"
|
|
)
|
|
|
|
// Config collects configuration parameters for s2k key-stretching
|
|
// transformatioms. A nil *Config is valid and results in all default
|
|
// values. Currently, Config is used only by the Serialize function in
|
|
// this package.
|
|
type Config struct {
|
|
// Hash is the default hash function to be used. If
|
|
// nil, SHA1 is used.
|
|
Hash crypto.Hash
|
|
// S2KCount is only used for symmetric encryption. It
|
|
// determines the strength of the passphrase stretching when
|
|
// the said passphrase is hashed to produce a key. S2KCount
|
|
// should be between 1024 and 65011712, inclusive. If Config
|
|
// is nil or S2KCount is 0, the value 65536 used. Not all
|
|
// values in the above range can be represented. S2KCount will
|
|
// be rounded up to the next representable value if it cannot
|
|
// be encoded exactly. When set, it is strongly encrouraged to
|
|
// use a value that is at least 65536. See RFC 4880 Section
|
|
// 3.7.1.3.
|
|
S2KCount int
|
|
}
|
|
|
|
func (c *Config) hash() crypto.Hash {
|
|
if c == nil || uint(c.Hash) == 0 {
|
|
// SHA1 is the historical default in this package.
|
|
return crypto.SHA1
|
|
}
|
|
|
|
return c.Hash
|
|
}
|
|
|
|
func (c *Config) encodedCount() uint8 {
|
|
if c == nil || c.S2KCount == 0 {
|
|
return 96 // The common case. Correspoding to 65536
|
|
}
|
|
|
|
i := c.S2KCount
|
|
switch {
|
|
// Behave like GPG. Should we make 65536 the lowest value used?
|
|
case i < 1024:
|
|
i = 1024
|
|
case i > 65011712:
|
|
i = 65011712
|
|
}
|
|
|
|
return encodeCount(i)
|
|
}
|
|
|
|
// encodeCount converts an iterative "count" in the range 1024 to
|
|
// 65011712, inclusive, to an encoded count. The return value is the
|
|
// octet that is actually stored in the GPG file. encodeCount panics
|
|
// if i is not in the above range (encodedCount above takes care to
|
|
// pass i in the correct range). See RFC 4880 Section 3.7.7.1.
|
|
func encodeCount(i int) uint8 {
|
|
if i < 1024 || i > 65011712 {
|
|
panic("count arg i outside the required range")
|
|
}
|
|
|
|
for encoded := 0; encoded < 256; encoded++ {
|
|
count := decodeCount(uint8(encoded))
|
|
if count >= i {
|
|
return uint8(encoded)
|
|
}
|
|
}
|
|
|
|
return 255
|
|
}
|
|
|
|
// decodeCount returns the s2k mode 3 iterative "count" corresponding to
|
|
// the encoded octet c.
|
|
func decodeCount(c uint8) int {
|
|
return (16 + int(c&15)) << (uint32(c>>4) + 6)
|
|
}
|
|
|
|
// Simple writes to out the result of computing the Simple S2K function (RFC
|
|
// 4880, section 3.7.1.1) using the given hash and input passphrase.
|
|
func Simple(out []byte, h hash.Hash, in []byte) {
|
|
Salted(out, h, in, nil)
|
|
}
|
|
|
|
var zero [1]byte
|
|
|
|
// Salted writes to out the result of computing the Salted S2K function (RFC
|
|
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
|
|
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
|
|
done := 0
|
|
var digest []byte
|
|
|
|
for i := 0; done < len(out); i++ {
|
|
h.Reset()
|
|
for j := 0; j < i; j++ {
|
|
h.Write(zero[:])
|
|
}
|
|
h.Write(salt)
|
|
h.Write(in)
|
|
digest = h.Sum(digest[:0])
|
|
n := copy(out[done:], digest)
|
|
done += n
|
|
}
|
|
}
|
|
|
|
// Iterated writes to out the result of computing the Iterated and Salted S2K
|
|
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
|
|
// salt and iteration count.
|
|
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
|
|
combined := make([]byte, len(in)+len(salt))
|
|
copy(combined, salt)
|
|
copy(combined[len(salt):], in)
|
|
|
|
if count < len(combined) {
|
|
count = len(combined)
|
|
}
|
|
|
|
done := 0
|
|
var digest []byte
|
|
for i := 0; done < len(out); i++ {
|
|
h.Reset()
|
|
for j := 0; j < i; j++ {
|
|
h.Write(zero[:])
|
|
}
|
|
written := 0
|
|
for written < count {
|
|
if written+len(combined) > count {
|
|
todo := count - written
|
|
h.Write(combined[:todo])
|
|
written = count
|
|
} else {
|
|
h.Write(combined)
|
|
written += len(combined)
|
|
}
|
|
}
|
|
digest = h.Sum(digest[:0])
|
|
n := copy(out[done:], digest)
|
|
done += n
|
|
}
|
|
}
|
|
|
|
func parseGNUExtensions(r io.Reader) (f func(out, in []byte), err error) {
|
|
var buf [9]byte
|
|
|
|
// A three-byte string identifier
|
|
_, err = io.ReadFull(r, buf[:3])
|
|
if err != nil {
|
|
return
|
|
}
|
|
gnuExt := string(buf[:3])
|
|
|
|
if gnuExt != "GNU" {
|
|
return nil, errors.UnsupportedError("Malformed GNU extension: " + gnuExt)
|
|
}
|
|
_, err = io.ReadFull(r, buf[:1])
|
|
if err != nil {
|
|
return
|
|
}
|
|
gnuExtType := int(buf[0])
|
|
switch gnuExtType {
|
|
case 1:
|
|
return nil, nil
|
|
case 2:
|
|
// Read a serial number, which is prefixed by a 1-byte length.
|
|
// The maximum length is 16.
|
|
var lenBuf [1]byte
|
|
_, err = io.ReadFull(r, lenBuf[:])
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
maxLen := 16
|
|
ivLen := int(lenBuf[0])
|
|
if ivLen > maxLen {
|
|
ivLen = maxLen
|
|
}
|
|
ivBuf := make([]byte, ivLen)
|
|
// For now we simply discard the IV
|
|
_, err = io.ReadFull(r, ivBuf)
|
|
if err != nil {
|
|
return
|
|
}
|
|
return nil, nil
|
|
default:
|
|
return nil, errors.UnsupportedError("unknown S2K GNU protection mode: " + strconv.Itoa(int(gnuExtType)))
|
|
}
|
|
}
|
|
|
|
// Parse reads a binary specification for a string-to-key transformation from r
|
|
// and returns a function which performs that transform.
|
|
func Parse(r io.Reader) (f func(out, in []byte), err error) {
|
|
var buf [9]byte
|
|
|
|
_, err = io.ReadFull(r, buf[:2])
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// GNU Extensions; handle them before we try to look for a hash, which won't
|
|
// be needed in most cases anyway.
|
|
if buf[0] == 101 {
|
|
return parseGNUExtensions(r)
|
|
}
|
|
|
|
hash, ok := HashIdToHash(buf[1])
|
|
if !ok {
|
|
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
|
|
}
|
|
if !hash.Available() {
|
|
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
|
|
}
|
|
h := hash.New()
|
|
|
|
switch buf[0] {
|
|
case 0:
|
|
f := func(out, in []byte) {
|
|
Simple(out, h, in)
|
|
}
|
|
return f, nil
|
|
case 1:
|
|
_, err = io.ReadFull(r, buf[:8])
|
|
if err != nil {
|
|
return
|
|
}
|
|
f := func(out, in []byte) {
|
|
Salted(out, h, in, buf[:8])
|
|
}
|
|
return f, nil
|
|
case 3:
|
|
_, err = io.ReadFull(r, buf[:9])
|
|
if err != nil {
|
|
return
|
|
}
|
|
count := decodeCount(buf[8])
|
|
f := func(out, in []byte) {
|
|
Iterated(out, h, in, buf[:8], count)
|
|
}
|
|
return f, nil
|
|
}
|
|
|
|
return nil, errors.UnsupportedError("S2K function")
|
|
}
|
|
|
|
// Serialize salts and stretches the given passphrase and writes the
|
|
// resulting key into key. It also serializes an S2K descriptor to
|
|
// w. The key stretching can be configured with c, which may be
|
|
// nil. In that case, sensible defaults will be used.
|
|
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
|
|
var buf [11]byte
|
|
buf[0] = 3 /* iterated and salted */
|
|
buf[1], _ = HashToHashId(c.hash())
|
|
salt := buf[2:10]
|
|
if _, err := io.ReadFull(rand, salt); err != nil {
|
|
return err
|
|
}
|
|
encodedCount := c.encodedCount()
|
|
count := decodeCount(encodedCount)
|
|
buf[10] = encodedCount
|
|
if _, err := w.Write(buf[:]); err != nil {
|
|
return err
|
|
}
|
|
|
|
Iterated(key, c.hash().New(), passphrase, salt, count)
|
|
return nil
|
|
}
|
|
|
|
// hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
|
|
// Go's crypto.Hash type. See RFC 4880, section 9.4.
|
|
var hashToHashIdMapping = []struct {
|
|
id byte
|
|
hash crypto.Hash
|
|
name string
|
|
}{
|
|
{1, crypto.MD5, "MD5"},
|
|
{2, crypto.SHA1, "SHA1"},
|
|
{3, crypto.RIPEMD160, "RIPEMD160"},
|
|
{8, crypto.SHA256, "SHA256"},
|
|
{9, crypto.SHA384, "SHA384"},
|
|
{10, crypto.SHA512, "SHA512"},
|
|
{11, crypto.SHA224, "SHA224"},
|
|
}
|
|
|
|
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
|
|
// hash id.
|
|
func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
|
|
for _, m := range hashToHashIdMapping {
|
|
if m.id == id {
|
|
return m.hash, true
|
|
}
|
|
}
|
|
return 0, false
|
|
}
|
|
|
|
// HashIdToString returns the name of the hash function corresponding to the
|
|
// given OpenPGP hash id, or panics if id is unknown.
|
|
func HashIdToString(id byte) (name string, ok bool) {
|
|
for _, m := range hashToHashIdMapping {
|
|
if m.id == id {
|
|
return m.name, true
|
|
}
|
|
}
|
|
|
|
return "", false
|
|
}
|
|
|
|
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
|
|
func HashToHashId(h crypto.Hash) (id byte, ok bool) {
|
|
for _, m := range hashToHashIdMapping {
|
|
if m.hash == h {
|
|
return m.id, true
|
|
}
|
|
}
|
|
return 0, false
|
|
}
|