package ca import ( "bytes" "crypto/rand" "crypto/sha256" "crypto/x509" "crypto/x509/pkix" "encoding/pem" "errors" "fmt" "math/big" "net/url" "sync" "time" "github.com/hashicorp/consul/agent/connect" "github.com/hashicorp/consul/agent/consul/state" "github.com/hashicorp/consul/agent/structs" ) var ErrNotInitialized = errors.New("provider not initialized") type ConsulProvider struct { Delegate ConsulProviderStateDelegate config *structs.ConsulCAProviderConfig id string clusterID string isRoot bool spiffeID *connect.SpiffeIDSigning sync.RWMutex } type ConsulProviderStateDelegate interface { State() *state.Store ApplyCARequest(*structs.CARequest) error } // Configure sets up the provider using the given configuration. func (c *ConsulProvider) Configure(clusterID string, isRoot bool, rawConfig map[string]interface{}) error { // Parse the raw config and update our ID. config, err := ParseConsulCAConfig(rawConfig) if err != nil { return err } c.config = config hash := sha256.Sum256([]byte(fmt.Sprintf("%s,%s,%v", config.PrivateKey, config.RootCert, isRoot))) c.id = connect.HexString(hash[:]) c.clusterID = clusterID c.isRoot = isRoot c.spiffeID = connect.SpiffeIDSigningForCluster(&structs.CAConfiguration{ClusterID: clusterID}) // Exit early if the state store has an entry for this provider's config. _, providerState, err := c.Delegate.State().CAProviderState(c.id) if err != nil { return err } if providerState != nil { return nil } // Check if there's an entry with the old ID scheme. oldID := fmt.Sprintf("%s,%s", config.PrivateKey, config.RootCert) _, providerState, err = c.Delegate.State().CAProviderState(oldID) if err != nil { return err } // Found an entry with the old ID, so update it to the new ID and // delete the old entry. if providerState != nil { newState := *providerState newState.ID = c.id createReq := &structs.CARequest{ Op: structs.CAOpSetProviderState, ProviderState: &newState, } if err := c.Delegate.ApplyCARequest(createReq); err != nil { return err } deleteReq := &structs.CARequest{ Op: structs.CAOpDeleteProviderState, ProviderState: providerState, } if err := c.Delegate.ApplyCARequest(deleteReq); err != nil { return err } return nil } // Write the provider state to the state store. newState := structs.CAConsulProviderState{ ID: c.id, } args := &structs.CARequest{ Op: structs.CAOpSetProviderState, ProviderState: &newState, } if err := c.Delegate.ApplyCARequest(args); err != nil { return err } return nil } // ActiveRoot returns the active root CA certificate. func (c *ConsulProvider) ActiveRoot() (string, error) { _, providerState, err := c.getState() if err != nil { return "", err } return providerState.RootCert, nil } // GenerateRoot initializes a new root certificate and private key // if needed. func (c *ConsulProvider) GenerateRoot() error { idx, providerState, err := c.getState() if err != nil { return err } if !c.isRoot { return fmt.Errorf("provider is not the root certificate authority") } if providerState.RootCert != "" { return nil } // Generate a private key if needed newState := *providerState if c.config.PrivateKey == "" { _, pk, err := connect.GeneratePrivateKeyWithConfig(c.config.PrivateKeyType, c.config.PrivateKeyBits) if err != nil { return err } newState.PrivateKey = pk } else { newState.PrivateKey = c.config.PrivateKey } // Generate the root CA if necessary if c.config.RootCert == "" { ca, err := c.generateCA(newState.PrivateKey, idx+1) if err != nil { return fmt.Errorf("error generating CA: %v", err) } newState.RootCert = ca } else { newState.RootCert = c.config.RootCert } // Write the provider state args := &structs.CARequest{ Op: structs.CAOpSetProviderState, ProviderState: &newState, } if err := c.Delegate.ApplyCARequest(args); err != nil { return err } return nil } // GenerateIntermediateCSR creates a private key and generates a CSR // for another datacenter's root to sign. func (c *ConsulProvider) GenerateIntermediateCSR() (string, error) { _, providerState, err := c.getState() if err != nil { return "", err } if c.isRoot { return "", fmt.Errorf("provider is the root certificate authority, " + "cannot generate an intermediate CSR") } // Create a new private key and CSR. signer, pk, err := connect.GeneratePrivateKeyWithConfig(c.config.PrivateKeyType, c.config.PrivateKeyBits) if err != nil { return "", err } csr, err := connect.CreateCACSR(c.spiffeID, signer) if err != nil { return "", err } // Write the new provider state to the store. newState := *providerState newState.PrivateKey = pk args := &structs.CARequest{ Op: structs.CAOpSetProviderState, ProviderState: &newState, } if err := c.Delegate.ApplyCARequest(args); err != nil { return "", err } return csr, nil } // SetIntermediate validates that the given intermediate is for the right private key // and writes the given intermediate and root certificates to the state. func (c *ConsulProvider) SetIntermediate(intermediatePEM, rootPEM string) error { _, providerState, err := c.getState() if err != nil { return err } if c.isRoot { return fmt.Errorf("cannot set an intermediate using another root in the primary datacenter") } err = validateSetIntermediate( intermediatePEM, rootPEM, providerState.PrivateKey, c.spiffeID, ) if err != nil { return err } // Update the state newState := *providerState newState.IntermediateCert = intermediatePEM newState.RootCert = rootPEM args := &structs.CARequest{ Op: structs.CAOpSetProviderState, ProviderState: &newState, } if err := c.Delegate.ApplyCARequest(args); err != nil { return err } return nil } // We aren't maintaining separate root/intermediate CAs for the builtin // provider, so just return the root. func (c *ConsulProvider) ActiveIntermediate() (string, error) { if c.isRoot { return c.ActiveRoot() } _, providerState, err := c.getState() if err != nil { return "", err } return providerState.IntermediateCert, nil } // We aren't maintaining separate root/intermediate CAs for the builtin // provider, so just return the root. func (c *ConsulProvider) GenerateIntermediate() (string, error) { return c.ActiveIntermediate() } // Remove the state store entry for this provider instance. func (c *ConsulProvider) Cleanup() error { args := &structs.CARequest{ Op: structs.CAOpDeleteProviderState, ProviderState: &structs.CAConsulProviderState{ID: c.id}, } if err := c.Delegate.ApplyCARequest(args); err != nil { return err } return nil } // Sign returns a new certificate valid for the given SpiffeIDService // using the current CA. func (c *ConsulProvider) Sign(csr *x509.CertificateRequest) (string, error) { // Lock during the signing so we don't use the same index twice // for different cert serial numbers. c.Lock() defer c.Unlock() // Get the provider state idx, providerState, err := c.getState() if err != nil { return "", err } if providerState.PrivateKey == "" { return "", ErrNotInitialized } // Create the keyId for the cert from the signing private key. signer, err := connect.ParseSigner(providerState.PrivateKey) if err != nil { return "", err } if signer == nil { return "", ErrNotInitialized } keyId, err := connect.KeyId(signer.Public()) if err != nil { return "", err } // Parse the SPIFFE ID spiffeId, err := connect.ParseCertURI(csr.URIs[0]) if err != nil { return "", err } subject := "" switch id := spiffeId.(type) { case *connect.SpiffeIDService: subject = id.Service case *connect.SpiffeIDAgent: subject = id.Agent default: return "", fmt.Errorf("SPIFFE ID in CSR must be a service ID") } // Parse the CA cert certPEM, err := c.ActiveIntermediate() if err != nil { return "", err } caCert, err := connect.ParseCert(certPEM) if err != nil { return "", fmt.Errorf("error parsing CA cert: %s", err) } // Cert template for generation sn := &big.Int{} sn.SetUint64(idx + 1) // Sign the certificate valid from 1 minute in the past, this helps it be // accepted right away even when nodes are not in close time sync across the // cluster. A minute is more than enough for typical DC clock drift. effectiveNow := time.Now().Add(-1 * time.Minute) template := x509.Certificate{ SerialNumber: sn, Subject: pkix.Name{CommonName: subject}, URIs: csr.URIs, Signature: csr.Signature, // We use the correct signature algorithm for the CA key we are signing with // regardless of the algorithm used to sign the CSR signature above since // the leaf might use a different key type. SignatureAlgorithm: connect.SigAlgoForKey(signer), PublicKeyAlgorithm: csr.PublicKeyAlgorithm, PublicKey: csr.PublicKey, BasicConstraintsValid: true, KeyUsage: x509.KeyUsageDataEncipherment | x509.KeyUsageKeyAgreement | x509.KeyUsageDigitalSignature | x509.KeyUsageKeyEncipherment, ExtKeyUsage: []x509.ExtKeyUsage{ x509.ExtKeyUsageClientAuth, x509.ExtKeyUsageServerAuth, }, NotAfter: effectiveNow.Add(c.config.LeafCertTTL), NotBefore: effectiveNow, AuthorityKeyId: keyId, SubjectKeyId: keyId, } // Create the certificate, PEM encode it and return that value. var buf bytes.Buffer bs, err := x509.CreateCertificate( rand.Reader, &template, caCert, csr.PublicKey, signer) if err != nil { return "", fmt.Errorf("error generating certificate: %s", err) } err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs}) if err != nil { return "", fmt.Errorf("error encoding certificate: %s", err) } err = c.incrementProviderIndex(providerState) if err != nil { return "", err } // Set the response return buf.String(), nil } // SignIntermediate will validate the CSR to ensure the trust domain in the // URI SAN matches the local one and that basic constraints for a CA certificate // are met. It should return a signed CA certificate with a path length constraint // of 0 to ensure that the certificate cannot be used to generate further CA certs. func (c *ConsulProvider) SignIntermediate(csr *x509.CertificateRequest) (string, error) { idx, providerState, err := c.getState() if err != nil { return "", err } if uriCount := len(csr.URIs); uriCount != 1 { return "", fmt.Errorf("incoming CSR has unexpected number of URIs: %d", uriCount) } certURI, err := connect.ParseCertURI(csr.URIs[0]) if err != nil { return "", err } // Verify that the trust domain is valid. if !c.spiffeID.CanSign(certURI) { return "", fmt.Errorf("incoming CSR domain %q is not valid for our domain %q", certURI.URI().String(), c.spiffeID.URI().String()) } // Get the signing private key. signer, err := connect.ParseSigner(providerState.PrivateKey) if err != nil { return "", err } subjectKeyID, err := connect.KeyId(csr.PublicKey) if err != nil { return "", err } // Parse the CA cert caCert, err := connect.ParseCert(providerState.RootCert) if err != nil { return "", fmt.Errorf("error parsing CA cert: %s", err) } // Cert template for generation sn := &big.Int{} sn.SetUint64(idx + 1) // Sign the certificate valid from 1 minute in the past, this helps it be // accepted right away even when nodes are not in close time sync across the // cluster. A minute is more than enough for typical DC clock drift. effectiveNow := time.Now().Add(-1 * time.Minute) template := x509.Certificate{ SerialNumber: sn, Subject: csr.Subject, URIs: csr.URIs, Signature: csr.Signature, SignatureAlgorithm: connect.SigAlgoForKey(signer), PublicKeyAlgorithm: csr.PublicKeyAlgorithm, PublicKey: csr.PublicKey, BasicConstraintsValid: true, KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageCRLSign | x509.KeyUsageDigitalSignature, IsCA: true, MaxPathLenZero: true, NotAfter: effectiveNow.AddDate(1, 0, 0), NotBefore: effectiveNow, SubjectKeyId: subjectKeyID, } // Create the certificate, PEM encode it and return that value. var buf bytes.Buffer bs, err := x509.CreateCertificate( rand.Reader, &template, caCert, csr.PublicKey, signer) if err != nil { return "", fmt.Errorf("error generating certificate: %s", err) } err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs}) if err != nil { return "", fmt.Errorf("error encoding certificate: %s", err) } err = c.incrementProviderIndex(providerState) if err != nil { return "", err } // Set the response return buf.String(), nil } // CrossSignCA returns the given CA cert signed by the current active root. func (c *ConsulProvider) CrossSignCA(cert *x509.Certificate) (string, error) { c.Lock() defer c.Unlock() // Get the provider state idx, providerState, err := c.getState() if err != nil { return "", err } privKey, err := connect.ParseSigner(providerState.PrivateKey) if err != nil { return "", fmt.Errorf("error parsing private key %q: %s", providerState.PrivateKey, err) } rootCA, err := connect.ParseCert(providerState.RootCert) if err != nil { return "", err } keyId, err := connect.KeyId(privKey.Public()) if err != nil { return "", err } // Create the cross-signing template from the existing root CA serialNum := &big.Int{} serialNum.SetUint64(idx + 1) template := *cert template.SerialNumber = serialNum template.SignatureAlgorithm = rootCA.SignatureAlgorithm template.AuthorityKeyId = keyId // Sign the certificate valid from 1 minute in the past, this helps it be // accepted right away even when nodes are not in close time sync across the // cluster. A minute is more than enough for typical DC clock drift. effectiveNow := time.Now().Add(-1 * time.Minute) template.NotBefore = effectiveNow // This cross-signed cert is only needed during rotation, and only while old // leaf certs are still in use. They expire within 3 days currently so 7 is // safe. TODO(banks): make this be based on leaf expiry time when that is // configurable. template.NotAfter = effectiveNow.AddDate(0, 0, 7) bs, err := x509.CreateCertificate( rand.Reader, &template, rootCA, cert.PublicKey, privKey) if err != nil { return "", fmt.Errorf("error generating CA certificate: %s", err) } var buf bytes.Buffer err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs}) if err != nil { return "", fmt.Errorf("error encoding private key: %s", err) } err = c.incrementProviderIndex(providerState) if err != nil { return "", err } return buf.String(), nil } // getState returns the current provider state from the state delegate, and returns // ErrNotInitialized if no entry is found. func (c *ConsulProvider) getState() (uint64, *structs.CAConsulProviderState, error) { state := c.Delegate.State() idx, providerState, err := state.CAProviderState(c.id) if err != nil { return 0, nil, err } if providerState == nil { return 0, nil, ErrNotInitialized } return idx, providerState, nil } // incrementProviderIndex does a write to increment the provider state store table index // used for serial numbers when generating certificates. func (c *ConsulProvider) incrementProviderIndex(providerState *structs.CAConsulProviderState) error { newState := *providerState args := &structs.CARequest{ Op: structs.CAOpSetProviderState, ProviderState: &newState, } if err := c.Delegate.ApplyCARequest(args); err != nil { return err } return nil } // generateCA makes a new root CA using the current private key func (c *ConsulProvider) generateCA(privateKey string, sn uint64) (string, error) { state := c.Delegate.State() _, config, err := state.CAConfig(nil) if err != nil { return "", err } privKey, err := connect.ParseSigner(privateKey) if err != nil { return "", fmt.Errorf("error parsing private key %q: %s", privateKey, err) } name := fmt.Sprintf("Consul CA %d", sn) // The URI (SPIFFE compatible) for the cert id := connect.SpiffeIDSigningForCluster(config) keyId, err := connect.KeyId(privKey.Public()) if err != nil { return "", err } // Create the CA cert serialNum := &big.Int{} serialNum.SetUint64(sn) template := x509.Certificate{ SerialNumber: serialNum, Subject: pkix.Name{CommonName: name}, URIs: []*url.URL{id.URI()}, BasicConstraintsValid: true, KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageCRLSign | x509.KeyUsageDigitalSignature, IsCA: true, NotAfter: time.Now().AddDate(10, 0, 0), NotBefore: time.Now(), AuthorityKeyId: keyId, SubjectKeyId: keyId, } bs, err := x509.CreateCertificate( rand.Reader, &template, &template, privKey.Public(), privKey) if err != nil { return "", fmt.Errorf("error generating CA certificate: %s", err) } var buf bytes.Buffer err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs}) if err != nil { return "", fmt.Errorf("error encoding private key: %s", err) } return buf.String(), nil }