Adds automation for generating the map of `gRPC Method Name → Rate Limit Type`
used by the middleware introduced in #15550, and will ensure we don't forget
to add new endpoints.
Engineers must annotate their RPCs in the proto file like so:
```
rpc Foo(FooRequest) returns (FooResponse) {
option (consul.internal.ratelimit.spec) = {
operation_type: READ,
};
}
```
When they run `make proto` a protoc plugin `protoc-gen-consul-rate-limit` will
be installed that writes rate-limit specs as a JSON array to a file called
`.ratelimit.tmp` (one per protobuf package/directory).
After running Buf, `make proto` will execute a post-process script that will
ingest all of the `.ratelimit.tmp` files and generate a Go file containing the
mappings in the `agent/grpc-middleware` package. In the enterprise repository,
it will write an additional file with the enterprise-only endpoints.
If an engineer forgets to add the annotation to a new RPC, the plugin will
return an error like so:
```
RPC Foo is missing rate-limit specification, fix it with:
import "proto-public/annotations/ratelimit/ratelimit.proto";
service Bar {
rpc Foo(...) returns (...) {
option (hashicorp.consul.internal.ratelimit.spec) = {
operation_type: OPERATION_READ | OPERATION_WRITE | OPERATION_EXEMPT,
};
}
}
```
In the future, this annotation can be extended to support rate-limit
category (e.g. KV vs Catalog) and to determine the retry policy.
To support Destinations on the service-defaults (for tproxy with terminating gateway), we need to now also make servers watch service-defaults config entries.
This is the OSS portion of enterprise PR 2242.
This PR introduces a server-local implementation of the proxycfg.ServiceList
interface, backed by streaming events and a local materializer.
We cannot do this for "subscribe" and "partition" this easily without
breakage so those are omitted.
Any protobuf message passed around via an Any construct will have the
fully qualified package name embedded in the protobuf as a string. Also
RPC method dispatch will include the package of the service during
serialization.
- We will be passing pbservice and pbpeering through an Any as part of
peer stream replication.
- We will be exposing two new gRPC services via pbpeering and
pbpeerstream.
This is the OSS portion of enterprise PR 2141.
This commit provides a server-local implementation of the `proxycfg.Intentions`
interface that sources data from streaming events.
It adds events for the `service-intentions` config entry type, and then consumes
event streams (via materialized views) for the service's explicit intentions and
any applicable wildcard intentions, merging them into a single list of intentions.
An alternative approach I considered was to consume _all_ intention events (via
`SubjectWildcard`) and filter out the irrelevant ones. This would admittedly
remove some complexity in the `agent/proxycfg-glue` package but at the expense
of considerable overhead from waking potentially many thousands of connect
proxies every time any intention is updated.
This is the OSS portion of enterprise PR 2056.
This commit provides server-local implementations of the proxycfg.ConfigEntry
and proxycfg.ConfigEntryList interfaces, that source data from streaming events.
It makes use of the LocalMaterializer type introduced for peering replication,
adding the necessary support for authorization.
It also adds support for "wildcard" subscriptions (within a topic) to the event
publisher, as this is needed to fetch service-resolvers for all services when
configuring mesh gateways.
Currently, events will be emitted for just the ingress-gateway, service-resolver,
and mesh config entry types, as these are the only entries required by proxycfg
— the events will be emitted on topics named IngressGateway, ServiceResolver,
and MeshConfig topics respectively.
Though these events will only be consumed "locally" for now, they can also be
consumed via the gRPC endpoint (confirmed using grpcurl) so using them from
client agents should be a case of swapping the LocalMaterializer for an
RPCMaterializer.
* Install `buf` instead of `protoc`
* Created `buf.yaml` and `buf.gen.yaml` files in the two proto directories to control how `buf` generates/lints proto code.
* Invoke `buf` instead of `protoc`
* Added a `proto-format` make target.
* Committed the reformatted proto files.
* Added a `proto-lint` make target.
* Integrated proto linting with CI
* Fixed tons of proto linter warnings.
* Got rid of deprecated builtin protoc-gen-go grpc plugin usage. Moved to direct usage of protoc-gen-go-grpc.
* Unified all proto directories / go packages around using pb prefixes but ensuring all proto packages do not have the prefix.
* deps: upgrade gogo-protobuf to v1.3.2
* go mod tidy using go 1.16
* proto: regen protobufs after upgrading gogo/protobuf
Co-authored-by: Daniel Nephin <dnephin@hashicorp.com>