The grpc resolver implementation is fed from changes to the
router.Router. Within the router there is a map of various areas storing
the addressing information for servers in those areas. All map entries
are of the WAN variety except a single special entry for the LAN.
Addressing information in the LAN "area" are local addresses intended
for use when making a client-to-server or server-to-server request.
The client agent correctly updates this LAN area when receiving lan serf
events, so by extension the grpc resolver works fine in that scenario.
The server agent only initially populates a single entry in the LAN area
(for itself) on startup, and then never mutates that area map again.
For normal RPCs a different structure is used for LAN routing.
Additionally when selecting a server to contact in the local datacenter
it will randomly select addresses from either the LAN or WAN addressed
entries in the map.
Unfortunately this means that the grpc resolver stack as it exists on
server agents is either broken or only accidentally functions by having
servers dial each other over the WAN-accessible address. If the operator
disables the serf wan port completely likely this incidental functioning
would break.
This PR enforces that local requests for servers (both for stale reads
or leader forwarded requests) exclusively use the LAN "area" information
and also fixes it so that servers keep that area up to date in the
router.
A test for the grpc resolver logic was added, as well as a higher level
full-stack test to ensure the externally perceived bug does not return.
Re-add ServerExternalAddresses parameter in GenerateToken endpoint
This reverts commit 5e156772f6
and adds extra functionality to support newer peering behaviors.
A previous commit introduced an internally-managed server certificate
to use for peering-related purposes.
Now the peering token has been updated to match that behavior:
- The server name matches the structure of the server cert
- The CA PEMs correspond to the Connect CA
Note that if Conect is disabled, and by extension the Connect CA, we
fall back to the previous behavior of returning the manually configured
certs and local server SNI.
Several tests were updated to use the gRPC TLS port since they enable
Connect by default. This means that the peering token will embed the
Connect CA, and the dialer will expect a TLS listener.
Update generate token endpoint (rpc, http, and api module)
If ServerExternalAddresses are set, it will override any addresses gotten from the "consul" service, and be used in the token instead, and dialed by the dialer. This allows for setting up a load balancer for example, in front of the consul servers.
Peer replication is intended to be between separate Consul installs and
effectively should be considered "external". This PR moves the peer
stream replication bidirectional RPC endpoint to the external gRPC
server and ensures that things continue to function.
These changes are primarily for Consul's UI, where we want to be more
specific about the state a peering is in.
- The "initial" state was renamed to pending, and no longer applies to
peerings being established from a peering token.
- Upon request to establish a peering from a peering token, peerings
will be set as "establishing". This will help distinguish between the
two roles: the cluster that generates the peering token and the
cluster that establishes the peering.
- When marked for deletion, peering state will be set to "deleting".
This way the UI determines the deletion via the state rather than the
"DeletedAt" field.
Co-authored-by: freddygv <freddy@hashicorp.com>
When our peer deletes the peering it is locally marked as terminated.
This termination should kick off deleting all imported data, but should
not delete the peering object itself.
Keeping peerings marked as terminated acts as a signal that the action
took place.
Once a peering is marked for deletion a new leader routine will now
clean up all imported resources and then the peering itself.
A lot of the logic was grabbed from the namespace/partitions deferred
deletions but with a handful of simplifications:
- The rate limiting is not configurable.
- Deleting imported nodes/services/checks is done by deleting nodes with
the Txn API. The services and checks are deleted as a side-effect.
- There is no "round rate limiter" like with namespaces and partitions.
This is because peerings are purely local, and deleting a peering in
the datacenter does not depend on deleting data from other DCs like
with WAN-federated namespaces. All rate limiting is handled by the
Raft rate limiter.
When deleting a peering we do not want to delete the peering and all
imported data in a single operation, since deleting a large amount of
data at once could overload Consul.
Instead we defer deletion of peerings so that:
1. When a peering deletion request is received via gRPC the peering is
marked for deletion by setting the DeletedAt field.
2. A leader routine will monitor for peerings that are marked for
deletion and kick off a throttled deletion of all imported resources
before deleting the peering itself.
This commit mostly addresses point #1 by modifying the peering service
to mark peerings for deletion. Another key change is to add a
PeeringListDeleted state store function which can return all peerings
marked for deletion. This function is what will be watched by the
deferred deletion leader routine.
I noticed that the JSON api endpoints for peerings json encodes protobufs directly, rather than converting them into their `api` package equivalents before marshal/unmarshaling them.
I updated this and used `mog` to do the annoying part in the middle.
Other changes:
- the status enum was converted into the friendlier string form of the enum for readability with tools like `curl`
- some of the `api` library functions were slightly modified to match other similar endpoints in UX (cc: @ndhanushkodi )
- peeringRead returns `nil` if not found
- partitions are NOT inferred from the agent's partition (matching 1.11-style logic)