* extensions: refactor PluginConfiguration into a more generic type
ExtensionConfiguration
Also:
* adds endpoints configuration to lambda golden tests
* uses string constant for builtin/aws/lambda
Co-authored-by: Eric <eric@haberkorn.co>
* feat(ingress-gateway): support outlier detection of upstream service for ingress gateway
* changelog
Co-authored-by: Eric Haberkorn <erichaberkorn@gmail.com>
Fix local mesh gateway with peering discovery chains.
Prior to this patch, discovery chains with peers would not
properly honor the mesh gateway mode for two reasons.
1. An incorrect target upstream ID was used to lookup the
mesh gateway mode. To fix this, the parent upstream uid is
now used instead of the discovery-chain-target-uid to find
the intended mesh gateway mode.
2. The watch for local mesh gateways was never initialized
for discovery chains. To fix this, the discovery chains are
now scanned, and a local GW watch is spawned if: the mesh
gateway mode is local and the target is a peering connection.
* update go version to 1.18 for api and sdk, go mod tidy
* removes ioutil usage everywhere which was deprecated in go1.16 in favour of io and os packages. Also introduces a lint rule which forbids use of ioutil going forward.
Co-authored-by: R.B. Boyer <4903+rboyer@users.noreply.github.com>
* Fix mesh gateway proxy-defaults not affecting upstreams.
* Clarify distinction with upstream settings
Top-level mesh gateway mode in proxy-defaults and service-defaults gets
merged into NodeService.Proxy.MeshGateway, and only gets merged with
the mode attached to an an upstream in proxycfg/xds.
* Fix mgw mode usage for peered upstreams
There were a couple issues with how mgw mode was being handled for
peered upstreams.
For starters, mesh gateway mode from proxy-defaults
and the top-level of service-defaults gets stored in
NodeService.Proxy.MeshGateway, but the upstream watch for peered data
was only considering the mesh gateway config attached in
NodeService.Proxy.Upstreams[i]. This means that applying a mesh gateway
mode via global proxy-defaults or service-defaults on the downstream
would not have an effect.
Separately, transparent proxy watches for peered upstreams didn't
consider mesh gateway mode at all.
This commit addresses the first issue by ensuring that we overlay the
upstream config for peered upstreams as we do for non-peered. The second
issue is addressed by re-using setupWatchesForPeeredUpstream when
handling transparent proxy updates.
Note that for transparent proxies we do not yet support mesh gateway
mode per upstream, so the NodeService.Proxy.MeshGateway mode is used.
* Fix upstream mesh gateway mode handling in xds
This commit ensures that when determining the mesh gateway mode for
peered upstreams we consider the NodeService.Proxy.MeshGateway config as
a baseline.
In absense of this change, setting a mesh gateway mode via
proxy-defaults or the top-level of service-defaults will not have an
effect for peered upstreams.
* Merge service/proxy defaults in cfg resolver
Previously the mesh gateway mode for connect proxies would be
merged at three points:
1. On servers, in ComputeResolvedServiceConfig.
2. On clients, in MergeServiceConfig.
3. On clients, in proxycfg/xds.
The first merge returns a ServiceConfigResponse where there is a
top-level MeshGateway config from proxy/service-defaults, along with
per-upstream config.
The second merge combines per-upstream config specified at the service
instance with per-upstream config specified centrally.
The third merge combines the NodeService.Proxy.MeshGateway
config containing proxy/service-defaults data with the per-upstream
mode. This third merge is easy to miss, which led to peered upstreams
not considering the mesh gateway mode from proxy-defaults.
This commit removes the third merge, and ensures that all mesh gateway
config is available at the upstream. This way proxycfg/xds do not need
to do additional overlays.
* Ensure that proxy-defaults is considered in wc
Upstream defaults become a synthetic Upstream definition under a
wildcard key "*". Now that proxycfg/xds expect Upstream definitions to
have the final MeshGateway values, this commit ensures that values from
proxy-defaults/service-defaults are the default for this synthetic
upstream.
* Add changelog.
Co-authored-by: freddygv <freddy@hashicorp.com>
Re-add ServerExternalAddresses parameter in GenerateToken endpoint
This reverts commit 5e156772f6
and adds extra functionality to support newer peering behaviors.
* ingress-gateways: don't log error when registering gateway
Previously, when an ingress gateway was registered without a
corresponding ingress gateway config entry, an error was logged
because the watch on the config entry returned a nil result.
This is expected so don't log an error.
Adds a user-configurable rate limiter to proxycfg snapshot delivery,
with a default limit of 250 updates per second.
This addresses a problem observed in our load testing of Consul
Dataplane where updating a "global" resource such as a wildcard
intention or the proxy-defaults config entry could starve the Raft or
Memberlist goroutines of CPU time, causing general cluster instability.
Replaces the reflection-based implementation of proxycfg's
ConfigSnapshot.Clone with code generated by deep-copy.
While load testing server-based xDS (for consul-dataplane) we discovered
this method is extremely expensive. The ConfigSnapshot struct, directly
or indirectly, contains a copy of many of the structs in the agent/structs
package, which creates a large graph for copystructure.Copy to traverse
at runtime, on every proxy reconfiguration.
Adds another datasource for proxycfg.HTTPChecks, for use on server agents. Typically these checks are performed by local client agents and there is no equivalent of this in agentless (where servers configure consul-dataplane proxies).
Hence, the data source is mostly a no-op on servers but in the case where the service is present within the local state, it delegates to the cache data source.
* Configure Envoy alpn_protocols based on service protocol
* define alpnProtocols in a more standard way
* http2 protocol should be h2 only
* formatting
* add test for getAlpnProtocol()
* create changelog entry
* change scope is connect-proxy
* ignore errors on ParseProxyConfig; fixes linter
* add tests for grpc and http2 public listeners
* remove newlines from PR
* Add alpn_protocol configuration for ingress gateway
* Guard against nil tlsContext
* add ingress gateway w/ TLS tests for gRPC and HTTP2
* getAlpnProtocols: add TCP protocol test
* add tests for ingress gateway with grpc/http2 and per-listener TLS config
* add tests for ingress gateway with grpc/http2 and per-listener TLS config
* add Gateway level TLS config with mixed protocol listeners to validate ALPN
* update changelog to include ingress-gateway
* add http/1.1 to http2 ALPN
* go fmt
* fix test on custom-trace-listener
This commit adds the xDS resources needed for INBOUND traffic from peer
clusters:
- 1 filter chain for all inbound peering requests.
- 1 cluster for all inbound peering requests.
- 1 endpoint per voting server with the gRPC TLS port configured.
There is one filter chain and cluster because unlike with WAN
federation, peer clusters will not attempt to dial individual servers.
Peer clusters will only dial the local mesh gateway addresses.
* feat(ingress gateway: support configuring limits in ingress-gateway config entry
- a new Defaults field with max_connections, max_pending_connections, max_requests
is added to ingress gateway config entry
- new field max_connections, max_pending_connections, max_requests in
individual services to overwrite the value in Default
- added unit test and integration test
- updated doc
Co-authored-by: Chris S. Kim <ckim@hashicorp.com>
Co-authored-by: Jeff Boruszak <104028618+boruszak@users.noreply.github.com>
Co-authored-by: Dan Stough <dan.stough@hashicorp.com>
Routing peering control plane traffic through mesh gateways can be
enabled or disabled at runtime with the mesh config entry.
This commit updates proxycfg to add or cancel watches for local servers
depending on this central config.
Note that WAN federation over mesh gateways is determined by a service
metadata flag, and any updates to the gateway service registration will
force the creation of a new snapshot. If enabled, WAN-fed over mesh
gateways will trigger a local server watch on initialize().
Because of this we will only add/remove server watches if WAN federation
over mesh gateways is disabled.
This is the OSS portion of enterprise PR 2489.
This PR introduces a server-local implementation of the
proxycfg.InternalServiceDump interface that sources data from a blocking query
against the server's state store.
For simplicity, it only implements the subset of the Internal.ServiceDump RPC
handler actually used by proxycfg - as such the result type has been changed
to IndexedCheckServiceNodes to avoid confusion.
This is the OSS portion of enterprise PR 2339.
It improves our handling of "irrecoverable" errors in proxycfg data sources.
The canonical example of this is what happens when the ACL token presented by
Envoy is deleted/revoked. Previously, the stream would get "stuck" until the
xDS server re-checked the token (after 5 minutes) and terminated the stream.
Materializers would also sit burning resources retrying something that could
never succeed.
Now, it is possible for data sources to mark errors as "terminal" which causes
the xDS stream to be closed immediately. Similarly, the submatview.Store will
evict materializers when it observes they have encountered such an error.
* add golden files
* add support to http in tgateway egress destination
* fix slice sorting to include both address and port when using server_names
* fix listener loop for http destination
* fix routes to generate a route per port and a virtualhost per port-address combination
* sort virtual hosts list to have a stable order
* extract redundant serviceNode
Peered upstreams has a separate loop in xds from discovery chain upstreams. This PR adds similar but slightly modified code to add filters for peered upstream listeners, clusters, and endpoints in the case of transparent proxy.
Because peerings are pairwise, between two tuples of (datacenter,
partition) having any exported reference via a discovery chain that
crosses out of the peered datacenter or partition will ultimately not be
able to work for various reasons. The biggest one is that there is no
way in the ultimate destination to configure an intention that can allow
an external SpiffeID to access a service.
This PR ensures that a user simply cannot do this, so they won't run
into weird situations like this.
This is the OSS portion of enterprise PR 2141.
This commit provides a server-local implementation of the `proxycfg.Intentions`
interface that sources data from streaming events.
It adds events for the `service-intentions` config entry type, and then consumes
event streams (via materialized views) for the service's explicit intentions and
any applicable wildcard intentions, merging them into a single list of intentions.
An alternative approach I considered was to consume _all_ intention events (via
`SubjectWildcard`) and filter out the irrelevant ones. This would admittedly
remove some complexity in the `agent/proxycfg-glue` package but at the expense
of considerable overhead from waking potentially many thousands of connect
proxies every time any intention is updated.
For initial cluster peering TProxy support we consider all imported services of a partition to be potential upstreams.
We leverage the VirtualIP table because it stores plain service names (e.g. "api", not "api-sidecar-proxy").
When the protocol is http-like, and an intention has a peered source
then the normal RBAC mTLS SAN field check is replaces with a joint combo
of:
mTLS SAN field must be the service's local mesh gateway leaf cert
AND
the first XFCC header (from the MGW) must have a URI field that matches the original intention source
Also:
- Update the regex program limit to be much higher than the teeny
defaults, since the RBAC regex constructions are more complicated now.
- Fix a few stray panics in xds generation.
This is only configured in xDS when a service with an L7 protocol is
exported.
They also load any relevant trust bundles for the peered services to
eventually use for L7 SPIFFE validation during mTLS termination.
Mesh gateways can use hostnames in their tagged addresses (#7999). This is useful
if you were to expose a mesh gateway using a cloud networking load balancer appliance
that gives you a DNS name but no reliable static IPs.
Envoy cannot accept hostnames via EDS and those must be configured using CDS.
There was already logic when configuring gateways in other locations in the code, but
given the illusions in play for peering the downstream of a peered service wasn't aware
that it should be doing that.
Also:
- ensuring that we always try to use wan-like addresses to cross peer boundaries.
Mesh gateways will now enable tcp connections with SNI names including peering information so that those connections may be proxied.
Note: this does not change the callers to use these mesh gateways.
This is the OSS portion of enterprise PR 1994
Rather than directly interrogating the agent-local state for HTTP
checks using the `HTTPCheckFetcher` interface, we now rely on the
config snapshot containing the checks.
This reduces the number of changes required to support server xDS
sessions.
It's not clear why the fetching approach was introduced in
931d167ebb.
Envoy's SPIFFE certificate validation extension allows for us to
validate against different root certificates depending on the trust
domain of the dialing proxy.
If there are any trust bundles from peers in the config snapshot then we
use the SPIFFE validator as the validation context, rather than the
usual TrustedCA.
The injected validation config includes the local root certificates as
well.
For mTLS to work between two proxies in peered clusters with different root CAs,
proxies need to configure their outbound listener to use different root certificates
for validation.
Up until peering was introduced proxies would only ever use one set of root certificates
to validate all mesh traffic, both inbound and outbound. Now an upstream proxy
may have a leaf certificate signed by a CA that's different from the dialing proxy's.
This PR makes changes to proxycfg and xds so that the upstream TLS validation
uses different root certificates depending on which cluster is being dialed.
This is the OSS portion of enterprise PRs 1904, 1905, 1906, 1907, 1949,
and 1971.
It replaces the proxycfg manager's direct dependency on the agent cache
with interfaces that will be implemented differently when serving xDS
sessions from a Consul server.
OSS port of enterprise PR 1822
Includes the necessary changes to the `proxycfg` and `xds` packages to enable
Consul servers to configure arbitrary proxies using catalog data.
Broadly, `proxycfg.Manager` now has public methods for registering,
deregistering, and listing registered proxies — the existing local agent
state-sync behavior has been moved into a separate component that makes use of
these methods.
When an xDS session is started for a proxy service in the catalog, a goroutine
will be spawned to watch the service in the server's state store and
re-register it with the `proxycfg.Manager` whenever it is updated (and clean
it up when the client goes away).
OSS portion of enterprise PR 1857.
This removes (most) references to the `cache.UpdateEvent` type in the
`proxycfg` package.
As we're going to be direct usage of the agent cache with interfaces that
can be satisfied by alternative server-local datasources, it doesn't make
sense to depend on this type everywhere anymore (particularly on the
`state.ch` channel).
We also plan to extract `proxycfg` out of Consul into a shared library in
the future, which would require removing this dependency.
Aside from a fairly rote find-and-replace, the main change is that the
`cache.Cache` and `health.Client` types now accept a callback function
parameter, rather than a `chan<- cache.UpdateEvents`. This allows us to
do the type conversion without running another goroutine.
Just like standard upstreams the order of applicability in descending precedence:
1. caller's `service-defaults` upstream override for destination
2. caller's `service-defaults` upstream defaults
3. destination's `service-resolver` ConnectTimeout
4. system default of 5s
Co-authored-by: mrspanishviking <kcardenas@hashicorp.com>
- `tls.incoming`: applies to the inbound mTLS targeting the public
listener on `connect-proxy` and `terminating-gateway` envoy instances
- `tls.outgoing`: applies to the outbound mTLS dialing upstreams from
`connect-proxy` and `ingress-gateway` envoy instances
Fixes#11966
Prior to this PR for the envoy xDS golden tests in the agent/xds package we
were hand-creating a proxycfg.ConfigSnapshot structure in the proper format for
input to the xDS generator. Over time this intermediate structure has gotten
trickier to build correctly for the various tests.
This PR proposes to switch to using the existing mechanism for turning a
structs.NodeService and a sequence of cache.UpdateEvent copies into a
proxycfg.ConfigSnapshot, as that is less error prone to construct and aligns
more with how the data arrives.
NOTE: almost all of this is in test-related code. I tried super hard to craft
correct event inputs to get the golden files to be the same, or similar enough
after construction to feel ok that i recreated the spirit of the original test
cases.
Transparent proxies typically cannot dial upstreams in remote
datacenters. However, if their upstream configures a redirect to a
remote DC then the upstream targets will be in another datacenter.
In that sort of case we should use the WAN address for the passthrough.
Due to timing, a transparent proxy could have two upstreams to dial
directly with the same address.
For example:
- The orders service can dial upstreams shipping and payment directly.
- An instance of shipping at address 10.0.0.1 is deregistered.
- Payments is scaled up and scheduled to have address 10.0.0.1.
- The orders service receives the event for the new payments instance
before seeing the deregistration for the shipping instance. At this
point two upstreams have the same passthrough address and Envoy will
reject the listener configuration.
To disambiguate this commit considers the Raft index when storing
passthrough addresses. In the example above, 10.0.0.1 would only be
associated with the newer payments service instance.
Transparent proxies can set up filter chains that allow direct
connections to upstream service instances. Services that can be dialed
directly are stored in the PassthroughUpstreams map of the proxycfg
snapshot.
Previously these addresses were not being cleaned up based on new
service health data. The list of addresses associated with an upstream
service would only ever grow.
As services scale up and down, eventually they will have instances
assigned to an IP that was previously assigned to a different service.
When IP addresses are duplicated across filter chain match rules the
listener config will be rejected by Envoy.
This commit updates the proxycfg snapshot management so that passthrough
addresses can get cleaned up when no longer associated with a given
upstream.
There is still the possibility of a race condition here where due to
timing an address is shared between multiple passthrough upstreams.
That concern is mitigated by #12195, but will be further addressed
in a follow-up.
set -euo pipefail
unset CDPATH
cd "$(dirname "$0")"
for f in $(git grep '\brequire := require\.New(' | cut -d':' -f1 | sort -u); do
echo "=== require: $f ==="
sed -i '/require := require.New(t)/d' $f
# require.XXX(blah) but not require.XXX(tblah) or require.XXX(rblah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\([^tr]\)/require.\1(t,\2/g' $f
# require.XXX(tblah) but not require.XXX(t, blah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\(t[^,]\)/require.\1(t,\2/g' $f
# require.XXX(rblah) but not require.XXX(r, blah)
sed -i 's/\brequire\.\([a-zA-Z0-9_]*\)(\(r[^,]\)/require.\1(t,\2/g' $f
gofmt -s -w $f
done
for f in $(git grep '\bassert := assert\.New(' | cut -d':' -f1 | sort -u); do
echo "=== assert: $f ==="
sed -i '/assert := assert.New(t)/d' $f
# assert.XXX(blah) but not assert.XXX(tblah) or assert.XXX(rblah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\([^tr]\)/assert.\1(t,\2/g' $f
# assert.XXX(tblah) but not assert.XXX(t, blah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\(t[^,]\)/assert.\1(t,\2/g' $f
# assert.XXX(rblah) but not assert.XXX(r, blah)
sed -i 's/\bassert\.\([a-zA-Z0-9_]*\)(\(r[^,]\)/assert.\1(t,\2/g' $f
gofmt -s -w $f
done
The gist here is that now we use a value-type struct proxycfg.UpstreamID
as the map key in ConfigSnapshot maps where we used to use "upstream
id-ish" strings. These are internal only and used just for bidirectional
trips through the agent cache keyspace (like the discovery chain target
struct).
For the few places where the upstream id needs to be projected into xDS,
that's what (proxycfg.UpstreamID).EnvoyID() is for. This lets us ALWAYS
inject the partition and namespace into these things without making
stuff like the golden testdata diverge.