mirror of https://github.com/hashicorp/consul
connect: create connect package for helpers
parent
6d294b6bb4
commit
7349c94c23
|
@ -0,0 +1,48 @@
|
|||
package connect
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/rand"
|
||||
"crypto/x509"
|
||||
"encoding/pem"
|
||||
"fmt"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// ParseCert parses the x509 certificate from a PEM-encoded value.
|
||||
func ParseCert(pemValue string) (*x509.Certificate, error) {
|
||||
block, _ := pem.Decode([]byte(pemValue))
|
||||
if block == nil {
|
||||
return nil, fmt.Errorf("no PEM-encoded data found")
|
||||
}
|
||||
|
||||
if block.Type != "CERTIFICATE" {
|
||||
return nil, fmt.Errorf("first PEM-block should be CERTIFICATE type")
|
||||
}
|
||||
|
||||
return x509.ParseCertificate(block.Bytes)
|
||||
}
|
||||
|
||||
// ParseSigner parses a crypto.Signer from a PEM-encoded key. The private key
|
||||
// is expected to be the first block in the PEM value.
|
||||
func ParseSigner(pemValue string) (crypto.Signer, error) {
|
||||
block, _ := pem.Decode([]byte(pemValue))
|
||||
if block == nil {
|
||||
return nil, fmt.Errorf("no PEM-encoded data found")
|
||||
}
|
||||
|
||||
switch block.Type {
|
||||
case "EC PRIVATE KEY":
|
||||
return x509.ParseECPrivateKey(block.Bytes)
|
||||
|
||||
default:
|
||||
return nil, fmt.Errorf("unknown PEM block type for signing key: %s", block.Type)
|
||||
}
|
||||
}
|
||||
|
||||
// SerialNumber generates a serial number suitable for a certificate.
|
||||
//
|
||||
// This function is taken directly from the Vault implementation.
|
||||
func SerialNumber() (*big.Int, error) {
|
||||
return rand.Int(rand.Reader, (&big.Int{}).Exp(big.NewInt(2), big.NewInt(159), nil))
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
// Package connect contains utilities and helpers for working with the
|
||||
// Connect feature of Consul.
|
||||
package connect
|
|
@ -0,0 +1,230 @@
|
|||
package connect
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/rand"
|
||||
"crypto/sha256"
|
||||
"crypto/x509"
|
||||
"crypto/x509/pkix"
|
||||
"encoding/pem"
|
||||
"fmt"
|
||||
"net/url"
|
||||
"sync/atomic"
|
||||
"time"
|
||||
|
||||
"github.com/hashicorp/consul/agent/structs"
|
||||
"github.com/mitchellh/go-testing-interface"
|
||||
)
|
||||
|
||||
// testClusterID is the Consul cluster ID for testing.
|
||||
//
|
||||
// NOTE(mitchellh): This might have to change some other constant for
|
||||
// real testing once we integrate the Cluster ID into the core. For now it
|
||||
// is unchecked.
|
||||
const testClusterID = "11111111-2222-3333-4444-555555555555"
|
||||
|
||||
// testCACounter is just an atomically incremented counter for creating
|
||||
// unique names for the CA certs.
|
||||
var testCACounter uint64 = 0
|
||||
|
||||
// TestCA creates a test CA certificate and signing key and returns it
|
||||
// in the CARoot structure format. The CARoot returned will NOT have an ID
|
||||
// set.
|
||||
//
|
||||
// If xc is non-nil, then the returned certificate will have a signing cert
|
||||
// that is cross-signed with the previous cert, and this will be set as
|
||||
// SigningCert.
|
||||
func TestCA(t testing.T, xc *structs.CARoot) *structs.CARoot {
|
||||
var result structs.CARoot
|
||||
result.Name = fmt.Sprintf("Test CA %d", atomic.AddUint64(&testCACounter, 1))
|
||||
|
||||
// Create the private key we'll use for this CA cert.
|
||||
signer := testPrivateKey(t, &result)
|
||||
|
||||
// The serial number for the cert
|
||||
sn, err := SerialNumber()
|
||||
if err != nil {
|
||||
t.Fatalf("error generating serial number: %s", err)
|
||||
}
|
||||
|
||||
// The URI (SPIFFE compatible) for the cert
|
||||
uri, err := url.Parse(fmt.Sprintf("spiffe://%s.consul", testClusterID))
|
||||
if err != nil {
|
||||
t.Fatalf("error parsing CA URI: %s", err)
|
||||
}
|
||||
|
||||
// Create the CA cert
|
||||
template := x509.Certificate{
|
||||
SerialNumber: sn,
|
||||
Subject: pkix.Name{CommonName: result.Name},
|
||||
URIs: []*url.URL{uri},
|
||||
PermittedDNSDomainsCritical: true,
|
||||
PermittedDNSDomains: []string{uri.Hostname()},
|
||||
BasicConstraintsValid: true,
|
||||
KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageCRLSign,
|
||||
IsCA: true,
|
||||
NotAfter: time.Now().Add(10 * 365 * 24 * time.Hour),
|
||||
NotBefore: time.Now(),
|
||||
AuthorityKeyId: testKeyID(t, signer.Public()),
|
||||
SubjectKeyId: testKeyID(t, signer.Public()),
|
||||
}
|
||||
|
||||
bs, err := x509.CreateCertificate(
|
||||
rand.Reader, &template, &template, signer.Public(), signer)
|
||||
if err != nil {
|
||||
t.Fatalf("error generating CA certificate: %s", err)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
|
||||
if err != nil {
|
||||
t.Fatalf("error encoding private key: %s", err)
|
||||
}
|
||||
result.RootCert = buf.String()
|
||||
|
||||
// If there is a prior CA to cross-sign with, then we need to create that
|
||||
// and set it as the signing cert.
|
||||
if xc != nil {
|
||||
xccert, err := ParseCert(xc.RootCert)
|
||||
if err != nil {
|
||||
t.Fatalf("error parsing CA cert: %s", err)
|
||||
}
|
||||
xcsigner, err := ParseSigner(xc.SigningKey)
|
||||
if err != nil {
|
||||
t.Fatalf("error parsing signing key: %s", err)
|
||||
}
|
||||
|
||||
// Set the authority key to be the previous one
|
||||
template.AuthorityKeyId = testKeyID(t, xcsigner.Public())
|
||||
|
||||
// Create the new certificate where the parent is the previous
|
||||
// CA, the public key is the new public key, and the signing private
|
||||
// key is the old private key.
|
||||
bs, err := x509.CreateCertificate(
|
||||
rand.Reader, &template, xccert, signer.Public(), xcsigner)
|
||||
if err != nil {
|
||||
t.Fatalf("error generating CA certificate: %s", err)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
|
||||
if err != nil {
|
||||
t.Fatalf("error encoding private key: %s", err)
|
||||
}
|
||||
result.SigningCert = buf.String()
|
||||
}
|
||||
|
||||
return &result
|
||||
}
|
||||
|
||||
// TestLeaf returns a valid leaf certificate for the named service with
|
||||
// the given CA Root.
|
||||
func TestLeaf(t testing.T, service string, root *structs.CARoot) string {
|
||||
// Parse the CA cert and signing key from the root
|
||||
caCert, err := ParseCert(root.RootCert)
|
||||
if err != nil {
|
||||
t.Fatalf("error parsing CA cert: %s", err)
|
||||
}
|
||||
signer, err := ParseSigner(root.SigningKey)
|
||||
if err != nil {
|
||||
t.Fatalf("error parsing signing key: %s", err)
|
||||
}
|
||||
|
||||
// The serial number for the cert
|
||||
sn, err := SerialNumber()
|
||||
if err != nil {
|
||||
t.Fatalf("error generating serial number: %s", err)
|
||||
}
|
||||
|
||||
// Cert template for generation
|
||||
template := x509.Certificate{
|
||||
SerialNumber: sn,
|
||||
Subject: pkix.Name{CommonName: service},
|
||||
SignatureAlgorithm: x509.ECDSAWithSHA256,
|
||||
BasicConstraintsValid: true,
|
||||
KeyUsage: x509.KeyUsageDataEncipherment | x509.KeyUsageKeyAgreement,
|
||||
ExtKeyUsage: []x509.ExtKeyUsage{
|
||||
x509.ExtKeyUsageClientAuth,
|
||||
x509.ExtKeyUsageServerAuth,
|
||||
},
|
||||
NotAfter: time.Now().Add(10 * 365 * 24 * time.Hour),
|
||||
NotBefore: time.Now(),
|
||||
AuthorityKeyId: testKeyID(t, signer.Public()),
|
||||
SubjectKeyId: testKeyID(t, signer.Public()),
|
||||
}
|
||||
|
||||
// Create the certificate, PEM encode it and return that value.
|
||||
var buf bytes.Buffer
|
||||
bs, err := x509.CreateCertificate(
|
||||
rand.Reader, &template, caCert, signer.Public(), signer)
|
||||
if err != nil {
|
||||
t.Fatalf("error generating certificate: %s", err)
|
||||
}
|
||||
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
|
||||
if err != nil {
|
||||
t.Fatalf("error encoding private key: %s", err)
|
||||
}
|
||||
|
||||
return buf.String()
|
||||
}
|
||||
|
||||
// testKeyID returns a KeyID from the given public key. The "raw" must be
|
||||
// an *ecdsa.PublicKey, but is an interface type to suppot crypto.Signer.Public
|
||||
// values.
|
||||
func testKeyID(t testing.T, raw interface{}) []byte {
|
||||
pub, ok := raw.(*ecdsa.PublicKey)
|
||||
if !ok {
|
||||
t.Fatalf("raw is type %T, expected *ecdsa.PublicKey", raw)
|
||||
}
|
||||
|
||||
// This is not standard; RFC allows any unique identifier as long as they
|
||||
// match in subject/authority chains but suggests specific hashing of DER
|
||||
// bytes of public key including DER tags. I can't be bothered to do esp.
|
||||
// since ECDSA keys don't have a handy way to marshal the publick key alone.
|
||||
h := sha256.New()
|
||||
h.Write(pub.X.Bytes())
|
||||
h.Write(pub.Y.Bytes())
|
||||
return h.Sum([]byte{})
|
||||
}
|
||||
|
||||
// testMemoizePK is the private key that we memoize once we generate it
|
||||
// once so that our tests don't rely on too much system entropy.
|
||||
var testMemoizePK atomic.Value
|
||||
|
||||
// testPrivateKey creates an ECDSA based private key.
|
||||
func testPrivateKey(t testing.T, ca *structs.CARoot) crypto.Signer {
|
||||
// If we already generated a private key, use that
|
||||
var pk *ecdsa.PrivateKey
|
||||
if v := testMemoizePK.Load(); v != nil {
|
||||
pk = v.(*ecdsa.PrivateKey)
|
||||
}
|
||||
|
||||
// If we have no key, then create a new one.
|
||||
if pk == nil {
|
||||
var err error
|
||||
pk, err = ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
|
||||
if err != nil {
|
||||
t.Fatalf("error generating private key: %s", err)
|
||||
}
|
||||
}
|
||||
|
||||
bs, err := x509.MarshalECPrivateKey(pk)
|
||||
if err != nil {
|
||||
t.Fatalf("error generating private key: %s", err)
|
||||
}
|
||||
|
||||
var buf bytes.Buffer
|
||||
err = pem.Encode(&buf, &pem.Block{Type: "EC PRIVATE KEY", Bytes: bs})
|
||||
if err != nil {
|
||||
t.Fatalf("error encoding private key: %s", err)
|
||||
}
|
||||
ca.SigningKey = buf.String()
|
||||
|
||||
// Memoize the key
|
||||
testMemoizePK.Store(pk)
|
||||
|
||||
return pk
|
||||
}
|
|
@ -0,0 +1,109 @@
|
|||
package connect
|
||||
|
||||
import (
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
)
|
||||
|
||||
// hasOpenSSL is used to determine if the openssl CLI exists for unit tests.
|
||||
var hasOpenSSL bool
|
||||
|
||||
func init() {
|
||||
_, err := exec.LookPath("openssl")
|
||||
hasOpenSSL = err == nil
|
||||
}
|
||||
|
||||
// Test that the TestCA and TestLeaf functions generate valid certificates.
|
||||
func TestTestCAAndLeaf(t *testing.T) {
|
||||
if !hasOpenSSL {
|
||||
t.Skip("openssl not found")
|
||||
return
|
||||
}
|
||||
|
||||
assert := assert.New(t)
|
||||
|
||||
// Create the certs
|
||||
ca := TestCA(t, nil)
|
||||
leaf := TestLeaf(t, "web", ca)
|
||||
|
||||
// Create a temporary directory for storing the certs
|
||||
td, err := ioutil.TempDir("", "consul")
|
||||
assert.Nil(err)
|
||||
defer os.RemoveAll(td)
|
||||
|
||||
// Write the cert
|
||||
assert.Nil(ioutil.WriteFile(filepath.Join(td, "ca.pem"), []byte(ca.RootCert), 0644))
|
||||
assert.Nil(ioutil.WriteFile(filepath.Join(td, "leaf.pem"), []byte(leaf), 0644))
|
||||
|
||||
// Use OpenSSL to verify so we have an external, known-working process
|
||||
// that can verify this outside of our own implementations.
|
||||
cmd := exec.Command(
|
||||
"openssl", "verify", "-verbose", "-CAfile", "ca.pem", "leaf.pem")
|
||||
cmd.Dir = td
|
||||
output, err := cmd.Output()
|
||||
t.Log(string(output))
|
||||
assert.Nil(err)
|
||||
}
|
||||
|
||||
// Test cross-signing.
|
||||
func TestTestCAAndLeaf_xc(t *testing.T) {
|
||||
if !hasOpenSSL {
|
||||
t.Skip("openssl not found")
|
||||
return
|
||||
}
|
||||
|
||||
assert := assert.New(t)
|
||||
|
||||
// Create the certs
|
||||
ca1 := TestCA(t, nil)
|
||||
ca2 := TestCA(t, ca1)
|
||||
leaf1 := TestLeaf(t, "web", ca1)
|
||||
leaf2 := TestLeaf(t, "web", ca2)
|
||||
|
||||
// Create a temporary directory for storing the certs
|
||||
td, err := ioutil.TempDir("", "consul")
|
||||
assert.Nil(err)
|
||||
defer os.RemoveAll(td)
|
||||
|
||||
// Write the cert
|
||||
xcbundle := []byte(ca1.RootCert)
|
||||
xcbundle = append(xcbundle, '\n')
|
||||
xcbundle = append(xcbundle, []byte(ca2.SigningCert)...)
|
||||
assert.Nil(ioutil.WriteFile(filepath.Join(td, "ca.pem"), xcbundle, 0644))
|
||||
assert.Nil(ioutil.WriteFile(filepath.Join(td, "leaf1.pem"), []byte(leaf1), 0644))
|
||||
assert.Nil(ioutil.WriteFile(filepath.Join(td, "leaf2.pem"), []byte(leaf2), 0644))
|
||||
|
||||
// OpenSSL verify the cross-signed leaf (leaf2)
|
||||
{
|
||||
cmd := exec.Command(
|
||||
"openssl", "verify", "-verbose", "-CAfile", "ca.pem", "leaf2.pem")
|
||||
cmd.Dir = td
|
||||
output, err := cmd.Output()
|
||||
t.Log(string(output))
|
||||
assert.Nil(err)
|
||||
}
|
||||
|
||||
// OpenSSL verify the old leaf (leaf1)
|
||||
{
|
||||
cmd := exec.Command(
|
||||
"openssl", "verify", "-verbose", "-CAfile", "ca.pem", "leaf1.pem")
|
||||
cmd.Dir = td
|
||||
output, err := cmd.Output()
|
||||
t.Log(string(output))
|
||||
assert.Nil(err)
|
||||
}
|
||||
}
|
||||
|
||||
// Test that the private key is memoized to preseve system entropy.
|
||||
func TestTestPrivateKey_memoize(t *testing.T) {
|
||||
ca1 := TestCA(t, nil)
|
||||
ca2 := TestCA(t, nil)
|
||||
if ca1.SigningKey != ca2.SigningKey {
|
||||
t.Fatal("should have the same signing keys for tests")
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue