Consul is a distributed, highly available, and data center aware solution to connect and configure applications across dynamic, distributed infrastructure.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

207 lines
5.5 KiB

package tlsutil
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/rand"
"crypto/sha256"
"crypto/x509"
"crypto/x509/pkix"
"encoding/pem"
"fmt"
"math/big"
"net"
"time"
"github.com/hashicorp/consul/agent/connect"
)
// GenerateSerialNumber returns random bigint generated with crypto/rand
func GenerateSerialNumber() (*big.Int, error) {
l := new(big.Int).Lsh(big.NewInt(1), 128)
s, err := rand.Int(rand.Reader, l)
if err != nil {
return nil, err
}
return s, nil
}
// GeneratePrivateKey generates a new ecdsa private key
func GeneratePrivateKey() (crypto.Signer, string, error) {
return connect.GeneratePrivateKey()
}
// GenerateCA generates a new CA for agent TLS (not to be confused with Connect TLS)
func GenerateCA(signer crypto.Signer, sn *big.Int, days int, constraints []string) (string, error) {
id, err := keyID(signer.Public())
if err != nil {
return "", err
}
name := fmt.Sprintf("Consul Agent CA %d", sn)
// Create the CA cert
template := x509.Certificate{
SerialNumber: sn,
Subject: pkix.Name{
Country: []string{"US"},
PostalCode: []string{"94105"},
Province: []string{"CA"},
Locality: []string{"San Francisco"},
StreetAddress: []string{"101 Second Street"},
Organization: []string{"HashiCorp Inc."},
CommonName: name,
},
BasicConstraintsValid: true,
KeyUsage: x509.KeyUsageCertSign | x509.KeyUsageCRLSign | x509.KeyUsageDigitalSignature,
IsCA: true,
NotAfter: time.Now().AddDate(0, 0, days),
NotBefore: time.Now(),
AuthorityKeyId: id,
SubjectKeyId: id,
}
if len(constraints) > 0 {
template.PermittedDNSDomainsCritical = true
template.PermittedDNSDomains = constraints
}
bs, err := x509.CreateCertificate(
rand.Reader, &template, &template, signer.Public(), signer)
if err != nil {
return "", fmt.Errorf("error generating CA certificate: %s", err)
}
var buf bytes.Buffer
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
if err != nil {
return "", fmt.Errorf("error encoding private key: %s", err)
}
return buf.String(), nil
}
// GenerateCert generates a new certificate for agent TLS (not to be confused with Connect TLS)
func GenerateCert(signer crypto.Signer, ca string, sn *big.Int, name string, days int, DNSNames []string, IPAddresses []net.IP, extKeyUsage []x509.ExtKeyUsage) (string, string, error) {
parent, err := parseCert(ca)
if err != nil {
return "", "", err
}
signee, pk, err := GeneratePrivateKey()
if err != nil {
return "", "", err
}
id, err := keyID(signee.Public())
if err != nil {
return "", "", err
}
template := x509.Certificate{
SerialNumber: sn,
Subject: pkix.Name{CommonName: name},
BasicConstraintsValid: true,
KeyUsage: x509.KeyUsageDigitalSignature | x509.KeyUsageKeyEncipherment,
ExtKeyUsage: extKeyUsage,
IsCA: false,
NotAfter: time.Now().AddDate(0, 0, days),
NotBefore: time.Now(),
SubjectKeyId: id,
DNSNames: DNSNames,
IPAddresses: IPAddresses,
}
bs, err := x509.CreateCertificate(rand.Reader, &template, parent, signee.Public(), signer)
if err != nil {
return "", "", err
}
var buf bytes.Buffer
err = pem.Encode(&buf, &pem.Block{Type: "CERTIFICATE", Bytes: bs})
if err != nil {
return "", "", fmt.Errorf("error encoding private key: %s", err)
}
return buf.String(), pk, nil
}
// KeyId returns a x509 KeyId from the given signing key.
func keyID(raw interface{}) ([]byte, error) {
switch raw.(type) {
case *ecdsa.PublicKey:
case *rsa.PublicKey:
default:
return nil, fmt.Errorf("invalid key type: %T", raw)
}
// This is not standard; RFC allows any unique identifier as long as they
// match in subject/authority chains but suggests specific hashing of DER
// bytes of public key including DER tags.
bs, err := x509.MarshalPKIXPublicKey(raw)
if err != nil {
return nil, err
}
// String formatted
kID := sha256.Sum256(bs)
return kID[:], nil
}
func parseCert(pemValue string) (*x509.Certificate, error) {
// The _ result below is not an error but the remaining PEM bytes.
block, _ := pem.Decode([]byte(pemValue))
if block == nil {
return nil, fmt.Errorf("no PEM-encoded data found")
}
if block.Type != "CERTIFICATE" {
return nil, fmt.Errorf("first PEM-block should be CERTIFICATE type")
}
return x509.ParseCertificate(block.Bytes)
}
// ParseSigner parses a crypto.Signer from a PEM-encoded key. The private key
// is expected to be the first block in the PEM value.
func ParseSigner(pemValue string) (crypto.Signer, error) {
// The _ result below is not an error but the remaining PEM bytes.
block, _ := pem.Decode([]byte(pemValue))
if block == nil {
return nil, fmt.Errorf("no PEM-encoded data found")
}
switch block.Type {
case "EC PRIVATE KEY":
return x509.ParseECPrivateKey(block.Bytes)
case "RSA PRIVATE KEY":
return x509.ParsePKCS1PrivateKey(block.Bytes)
default:
return nil, fmt.Errorf("unknown PEM block type for signing key: %s", block.Type)
}
}
func Verify(caString, certString, dns string) error {
roots := x509.NewCertPool()
ok := roots.AppendCertsFromPEM([]byte(caString))
if !ok {
return fmt.Errorf("failed to parse root certificate")
}
cert, err := parseCert(certString)
if err != nil {
return fmt.Errorf("failed to parse certificate")
}
opts := x509.VerifyOptions{
DNSName: fmt.Sprint(dns),
Roots: roots,
}
_, err = cert.Verify(opts)
return err
}