You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
consul/agent/proxycfg/state_test.go

595 lines
20 KiB

package proxycfg
import (
"context"
"fmt"
"sync"
"testing"
"github.com/hashicorp/consul/agent/cache"
cachetype "github.com/hashicorp/consul/agent/cache-types"
"github.com/hashicorp/consul/agent/consul/discoverychain"
"github.com/hashicorp/consul/agent/structs"
"github.com/hashicorp/consul/sdk/testutil"
"github.com/stretchr/testify/require"
)
func TestStateChanged(t *testing.T) {
tests := []struct {
name string
ns *structs.NodeService
token string
mutate func(ns structs.NodeService, token string) (*structs.NodeService, string)
want bool
}{
{
name: "nil node service",
ns: structs.TestNodeServiceProxy(t),
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
return nil, token
},
want: true,
},
{
name: "same service",
ns: structs.TestNodeServiceProxy(t),
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
return &ns, token
}, want: false,
},
{
name: "same service, different token",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
return &ns, "bar"
},
want: true,
},
{
name: "different service ID",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
ns.ID = "badger"
return &ns, token
},
want: true,
},
{
name: "different address",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
ns.Address = "10.10.10.10"
return &ns, token
},
want: true,
},
{
name: "different port",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
ns.Port = 12345
return &ns, token
},
want: true,
},
{
name: "different service kind",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
ns.Kind = ""
return &ns, token
},
want: true,
},
{
name: "different proxy target",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
ns.Proxy.DestinationServiceName = "badger"
return &ns, token
},
want: true,
},
{
name: "different proxy upstreams",
ns: structs.TestNodeServiceProxy(t),
token: "foo",
mutate: func(ns structs.NodeService, token string) (*structs.NodeService, string) {
ns.Proxy.Upstreams = nil
return &ns, token
},
want: true,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
require := require.New(t)
state, err := newState(tt.ns, tt.token)
require.NoError(err)
otherNS, otherToken := tt.mutate(*tt.ns, tt.token)
require.Equal(tt.want, state.Changed(otherNS, otherToken))
})
}
}
type testCacheNotifierRequest struct {
cacheType string
request cache.Request
ch chan<- cache.UpdateEvent
}
type testCacheNotifier struct {
lock sync.RWMutex
notifiers map[string]testCacheNotifierRequest
}
func newTestCacheNotifier() *testCacheNotifier {
return &testCacheNotifier{
notifiers: make(map[string]testCacheNotifierRequest),
}
}
func (cn *testCacheNotifier) Notify(ctx context.Context, t string, r cache.Request, correlationId string, ch chan<- cache.UpdateEvent) error {
cn.lock.Lock()
cn.notifiers[correlationId] = testCacheNotifierRequest{t, r, ch}
cn.lock.Unlock()
return nil
}
func (cn *testCacheNotifier) getNotifierRequest(t testing.TB, correlationId string) testCacheNotifierRequest {
cn.lock.RLock()
req, ok := cn.notifiers[correlationId]
cn.lock.RUnlock()
require.True(t, ok)
return req
}
func (cn *testCacheNotifier) getChanForCorrelationId(t testing.TB, correlationId string) chan<- cache.UpdateEvent {
req := cn.getNotifierRequest(t, correlationId)
require.NotNil(t, req.ch)
return req.ch
}
func (cn *testCacheNotifier) sendNotification(t testing.TB, correlationId string, event cache.UpdateEvent) {
cn.getChanForCorrelationId(t, correlationId) <- event
}
func (cn *testCacheNotifier) verifyWatch(t testing.TB, correlationId string) (string, cache.Request) {
// t.Logf("Watches: %+v", cn.notifiers)
req := cn.getNotifierRequest(t, correlationId)
require.NotNil(t, req.ch)
return req.cacheType, req.request
}
type verifyWatchRequest func(t testing.TB, cacheType string, request cache.Request)
func genVerifyDCSpecificWatch(expectedCacheType string, expectedDatacenter string) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, expectedCacheType, cacheType)
reqReal, ok := request.(*structs.DCSpecificRequest)
require.True(t, ok)
require.Equal(t, expectedDatacenter, reqReal.Datacenter)
}
}
func genVerifyRootsWatch(expectedDatacenter string) verifyWatchRequest {
return genVerifyDCSpecificWatch(cachetype.ConnectCARootName, expectedDatacenter)
}
func genVerifyListServicesWatch(expectedDatacenter string) verifyWatchRequest {
return genVerifyDCSpecificWatch(cachetype.CatalogListServicesName, expectedDatacenter)
}
func verifyDatacentersWatch(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, cachetype.CatalogDatacentersName, cacheType)
_, ok := request.(*structs.DatacentersRequest)
require.True(t, ok)
}
func genVerifyLeafWatch(expectedService string, expectedDatacenter string) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, cachetype.ConnectCALeafName, cacheType)
reqReal, ok := request.(*cachetype.ConnectCALeafRequest)
require.True(t, ok)
require.Equal(t, expectedDatacenter, reqReal.Datacenter)
require.Equal(t, expectedService, reqReal.Service)
}
}
func genVerifyIntentionWatch(expectedService string, expectedDatacenter string) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, cachetype.IntentionMatchName, cacheType)
reqReal, ok := request.(*structs.IntentionQueryRequest)
require.True(t, ok)
require.Equal(t, expectedDatacenter, reqReal.Datacenter)
require.NotNil(t, reqReal.Match)
require.Equal(t, structs.IntentionMatchDestination, reqReal.Match.Type)
require.Len(t, reqReal.Match.Entries, 1)
require.Equal(t, structs.IntentionDefaultNamespace, reqReal.Match.Entries[0].Namespace)
require.Equal(t, expectedService, reqReal.Match.Entries[0].Name)
}
}
func genVerifyPreparedQueryWatch(expectedName string, expectedDatacenter string) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, cachetype.PreparedQueryName, cacheType)
reqReal, ok := request.(*structs.PreparedQueryExecuteRequest)
require.True(t, ok)
require.Equal(t, expectedDatacenter, reqReal.Datacenter)
require.Equal(t, expectedName, reqReal.QueryIDOrName)
require.Equal(t, true, reqReal.Connect)
}
}
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
func genVerifyDiscoveryChainWatch(expected *structs.DiscoveryChainRequest) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, cachetype.CompiledDiscoveryChainName, cacheType)
reqReal, ok := request.(*structs.DiscoveryChainRequest)
require.True(t, ok)
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
require.Equal(t, expected, reqReal)
}
}
func genVerifyGatewayWatch(expectedDatacenter string) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, cachetype.InternalServiceDumpName, cacheType)
reqReal, ok := request.(*structs.ServiceDumpRequest)
require.True(t, ok)
require.Equal(t, expectedDatacenter, reqReal.Datacenter)
require.True(t, reqReal.UseServiceKind)
require.Equal(t, structs.ServiceKindMeshGateway, reqReal.ServiceKind)
}
}
func genVerifyServiceSpecificRequest(expectedCacheType, expectedService, expectedFilter, expectedDatacenter string, connect bool) verifyWatchRequest {
return func(t testing.TB, cacheType string, request cache.Request) {
require.Equal(t, expectedCacheType, cacheType)
reqReal, ok := request.(*structs.ServiceSpecificRequest)
require.True(t, ok)
require.Equal(t, expectedDatacenter, reqReal.Datacenter)
require.Equal(t, expectedService, reqReal.ServiceName)
require.Equal(t, expectedFilter, reqReal.QueryOptions.Filter)
require.Equal(t, connect, reqReal.Connect)
}
}
func genVerifyServiceWatch(expectedService, expectedFilter, expectedDatacenter string, connect bool) verifyWatchRequest {
return genVerifyServiceSpecificRequest(cachetype.HealthServicesName, expectedService, expectedFilter, expectedDatacenter, connect)
}
// This test is meant to exercise the various parts of the cache watching done by the state as
// well as its management of the ConfigSnapshot
//
// This test is expressly not calling Watch which in turn would execute the run function in a go
// routine. This allows the test to be fully synchronous and deterministic while still being able
// to validate the logic of most of the watching and state updating.
//
// The general strategy here is to
//
// 1. Initialize a state with a call to newState + setting some of the extra stuff like the CacheNotifier
// We will not be using the CacheNotifier to send notifications but calling handleUpdate ourselves
// 2. Iterate through a list of verification stages performing validation and updates for each.
// a. Ensure that the required watches are in place and validate they are correct
// b. Process a bunch of UpdateEvents by calling handleUpdate
// c. Validate that the ConfigSnapshot has been updated appropriately
func TestState_WatchesAndUpdates(t *testing.T) {
t.Parallel()
type verificationStage struct {
requiredWatches map[string]verifyWatchRequest
events []cache.UpdateEvent
verifySnapshot func(t testing.TB, snap *ConfigSnapshot)
}
type testCase struct {
// the state to operate on. the logger, source, cache,
// ctx and cancel fields will be filled in by the test
ns structs.NodeService
sourceDC string
stages []verificationStage
}
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
newConnectProxyCase := func(meshGatewayProxyConfigValue structs.MeshGatewayMode) testCase {
ns := structs.NodeService{
Kind: structs.ServiceKindConnectProxy,
ID: "web-sidecar-proxy",
Service: "web-sidecar-proxy",
Address: "10.0.1.1",
Port: 443,
Proxy: structs.ConnectProxyConfig{
DestinationServiceName: "web",
Upstreams: structs.Upstreams{
structs.Upstream{
DestinationType: structs.UpstreamDestTypePreparedQuery,
DestinationName: "query",
LocalBindPort: 10001,
},
structs.Upstream{
DestinationType: structs.UpstreamDestTypeService,
DestinationName: "api",
LocalBindPort: 10002,
},
structs.Upstream{
DestinationType: structs.UpstreamDestTypeService,
DestinationName: "api-failover-remote",
Datacenter: "dc2",
LocalBindPort: 10003,
MeshGateway: structs.MeshGatewayConfig{
Mode: structs.MeshGatewayModeRemote,
},
},
structs.Upstream{
DestinationType: structs.UpstreamDestTypeService,
DestinationName: "api-failover-local",
Datacenter: "dc2",
LocalBindPort: 10004,
MeshGateway: structs.MeshGatewayConfig{
Mode: structs.MeshGatewayModeLocal,
},
},
structs.Upstream{
DestinationType: structs.UpstreamDestTypeService,
DestinationName: "api-failover-direct",
Datacenter: "dc2",
LocalBindPort: 10005,
MeshGateway: structs.MeshGatewayConfig{
Mode: structs.MeshGatewayModeNone,
},
},
structs.Upstream{
DestinationType: structs.UpstreamDestTypeService,
DestinationName: "api-dc2",
LocalBindPort: 10006,
},
},
},
}
if meshGatewayProxyConfigValue != structs.MeshGatewayModeDefault {
ns.Proxy.MeshGateway.Mode = meshGatewayProxyConfigValue
}
stage0 := verificationStage{
requiredWatches: map[string]verifyWatchRequest{
rootsWatchID: genVerifyRootsWatch("dc1"),
leafWatchID: genVerifyLeafWatch("web", "dc1"),
intentionsWatchID: genVerifyIntentionWatch("web", "dc1"),
"upstream:prepared_query:query": genVerifyPreparedQueryWatch("query", "dc1"),
"discovery-chain:api": genVerifyDiscoveryChainWatch(&structs.DiscoveryChainRequest{
Name: "api",
EvaluateInDatacenter: "dc1",
EvaluateInNamespace: "default",
Datacenter: "dc1",
OverrideMeshGateway: structs.MeshGatewayConfig{
Mode: meshGatewayProxyConfigValue,
},
}),
"discovery-chain:api-failover-remote?dc=dc2": genVerifyDiscoveryChainWatch(&structs.DiscoveryChainRequest{
Name: "api-failover-remote",
EvaluateInDatacenter: "dc2",
EvaluateInNamespace: "default",
Datacenter: "dc1",
OverrideMeshGateway: structs.MeshGatewayConfig{
Mode: structs.MeshGatewayModeRemote,
},
}),
"discovery-chain:api-failover-local?dc=dc2": genVerifyDiscoveryChainWatch(&structs.DiscoveryChainRequest{
Name: "api-failover-local",
EvaluateInDatacenter: "dc2",
EvaluateInNamespace: "default",
Datacenter: "dc1",
OverrideMeshGateway: structs.MeshGatewayConfig{
Mode: structs.MeshGatewayModeLocal,
},
}),
"discovery-chain:api-failover-direct?dc=dc2": genVerifyDiscoveryChainWatch(&structs.DiscoveryChainRequest{
Name: "api-failover-direct",
EvaluateInDatacenter: "dc2",
EvaluateInNamespace: "default",
Datacenter: "dc1",
OverrideMeshGateway: structs.MeshGatewayConfig{
Mode: structs.MeshGatewayModeNone,
},
}),
"discovery-chain:api-dc2": genVerifyDiscoveryChainWatch(&structs.DiscoveryChainRequest{
Name: "api-dc2",
EvaluateInDatacenter: "dc1",
EvaluateInNamespace: "default",
Datacenter: "dc1",
OverrideMeshGateway: structs.MeshGatewayConfig{
Mode: meshGatewayProxyConfigValue,
},
}),
},
events: []cache.UpdateEvent{
cache.UpdateEvent{
CorrelationID: "discovery-chain:api",
Result: &structs.DiscoveryChainResponse{
Chain: discoverychain.TestCompileConfigEntries(t, "api", "default", "dc1",
func(req *discoverychain.CompileRequest) {
req.OverrideMeshGateway.Mode = meshGatewayProxyConfigValue
}),
},
Err: nil,
},
cache.UpdateEvent{
CorrelationID: "discovery-chain:api-failover-remote?dc=dc2",
Result: &structs.DiscoveryChainResponse{
Chain: discoverychain.TestCompileConfigEntries(t, "api-failover-remote", "default", "dc2",
func(req *discoverychain.CompileRequest) {
req.OverrideMeshGateway.Mode = structs.MeshGatewayModeRemote
}),
},
Err: nil,
},
cache.UpdateEvent{
CorrelationID: "discovery-chain:api-failover-local?dc=dc2",
Result: &structs.DiscoveryChainResponse{
Chain: discoverychain.TestCompileConfigEntries(t, "api-failover-local", "default", "dc2",
func(req *discoverychain.CompileRequest) {
req.OverrideMeshGateway.Mode = structs.MeshGatewayModeLocal
}),
},
Err: nil,
},
cache.UpdateEvent{
CorrelationID: "discovery-chain:api-failover-direct?dc=dc2",
Result: &structs.DiscoveryChainResponse{
Chain: discoverychain.TestCompileConfigEntries(t, "api-failover-direct", "default", "dc2",
func(req *discoverychain.CompileRequest) {
req.OverrideMeshGateway.Mode = structs.MeshGatewayModeNone
}),
},
Err: nil,
},
cache.UpdateEvent{
CorrelationID: "discovery-chain:api-dc2",
Result: &structs.DiscoveryChainResponse{
Chain: discoverychain.TestCompileConfigEntries(t, "api-dc2", "default", "dc1",
func(req *discoverychain.CompileRequest) {
req.OverrideMeshGateway.Mode = meshGatewayProxyConfigValue
},
&structs.ServiceResolverConfigEntry{
Kind: structs.ServiceResolver,
Name: "api-dc2",
Redirect: &structs.ServiceResolverRedirect{
Service: "api",
Datacenter: "dc2",
},
},
),
},
Err: nil,
},
},
}
stage1 := verificationStage{
requiredWatches: map[string]verifyWatchRequest{
"upstream-target:api.default.dc1:api": genVerifyServiceWatch("api", "", "dc1", true),
"upstream-target:api-failover-remote.default.dc2:api-failover-remote?dc=dc2": genVerifyGatewayWatch("dc2"),
"upstream-target:api-failover-local.default.dc2:api-failover-local?dc=dc2": genVerifyGatewayWatch("dc1"),
"upstream-target:api-failover-direct.default.dc2:api-failover-direct?dc=dc2": genVerifyServiceWatch("api-failover-direct", "", "dc2", true),
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
},
}
if meshGatewayProxyConfigValue == structs.MeshGatewayModeDefault {
stage1.requiredWatches["upstream-target:api.default.dc2:api-dc2"] = genVerifyServiceWatch("api", "", "dc2", true)
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
} else {
stage1.requiredWatches["upstream-target:api.default.dc2:api-dc2"] = genVerifyGatewayWatch("dc1")
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
}
return testCase{
ns: ns,
sourceDC: "dc1",
stages: []verificationStage{stage0, stage1},
}
}
cases := map[string]testCase{
"initial-gateway": testCase{
ns: structs.NodeService{
Kind: structs.ServiceKindMeshGateway,
ID: "mesh-gateway",
Service: "mesh-gateway",
Address: "10.0.1.1",
Port: 443,
},
sourceDC: "dc1",
stages: []verificationStage{
verificationStage{
requiredWatches: map[string]verifyWatchRequest{
rootsWatchID: genVerifyRootsWatch("dc1"),
serviceListWatchID: genVerifyListServicesWatch("dc1"),
datacentersWatchID: verifyDatacentersWatch,
},
},
},
},
connect: reconcile how upstream configuration works with discovery chains (#6225) * connect: reconcile how upstream configuration works with discovery chains The following upstream config fields for connect sidecars sanely integrate into discovery chain resolution: - Destination Namespace/Datacenter: Compilation occurs locally but using different default values for namespaces and datacenters. The xDS clusters that are created are named as they normally would be. - Mesh Gateway Mode (single upstream): If set this value overrides any value computed for any resolver for the entire discovery chain. The xDS clusters that are created may be named differently (see below). - Mesh Gateway Mode (whole sidecar): If set this value overrides any value computed for any resolver for the entire discovery chain. If this is specifically overridden for a single upstream this value is ignored in that case. The xDS clusters that are created may be named differently (see below). - Protocol (in opaque config): If set this value overrides the value computed when evaluating the entire discovery chain. If the normal chain would be TCP or if this override is set to TCP then the result is that we explicitly disable L7 Routing and Splitting. The xDS clusters that are created may be named differently (see below). - Connect Timeout (in opaque config): If set this value overrides the value for any resolver in the entire discovery chain. The xDS clusters that are created may be named differently (see below). If any of the above overrides affect the actual result of compiling the discovery chain (i.e. "tcp" becomes "grpc" instead of being a no-op override to "tcp") then the relevant parameters are hashed and provided to the xDS layer as a prefix for use in naming the Clusters. This is to ensure that if one Upstream discovery chain has no overrides and tangentially needs a cluster named "api.default.XXX", and another Upstream does have overrides for "api.default.XXX" that they won't cross-pollinate against the operator's wishes. Fixes #6159
5 years ago
"connect-proxy": newConnectProxyCase(structs.MeshGatewayModeDefault),
"connect-proxy-mesh-gateway-local": newConnectProxyCase(structs.MeshGatewayModeLocal),
}
for name, tc := range cases {
t.Run(name, func(t *testing.T) {
state, err := newState(&tc.ns, "")
// verify building the initial state worked
require.NoError(t, err)
require.NotNil(t, state)
// setup the test logger to use the t.Log
state.logger = testutil.TestLogger(t)
// setup a new testing cache notifier
cn := newTestCacheNotifier()
state.cache = cn
// setup the local datacenter information
state.source = &structs.QuerySource{
Datacenter: tc.sourceDC,
}
// setup the ctx as initWatches expects this to be there
state.ctx, state.cancel = context.WithCancel(context.Background())
// ensure the initial watch setup did not error
require.NoError(t, state.initWatches())
// get the initial configuration snapshot
snap := state.initialConfigSnapshot()
//--------------------------------------------------------------------
//
// All the nested subtests here are to make failures easier to
// correlate back with the test table
//
//--------------------------------------------------------------------
for idx, stage := range tc.stages {
require.True(t, t.Run(fmt.Sprintf("stage-%d", idx), func(t *testing.T) {
for correlationId, verifier := range stage.requiredWatches {
require.True(t, t.Run(correlationId, func(t *testing.T) {
// verify that the watch was initiated
cacheType, request := cn.verifyWatch(t, correlationId)
// run the verifier if any
if verifier != nil {
verifier(t, cacheType, request)
}
}))
}
// the state is not currently executing the run method in a goroutine
// therefore we just tell it about the updates
for eveIdx, event := range stage.events {
require.True(t, t.Run(fmt.Sprintf("update-%d", eveIdx), func(t *testing.T) {
require.NoError(t, state.handleUpdate(event, &snap))
}))
}
// verify the snapshot
if stage.verifySnapshot != nil {
stage.verifySnapshot(t, &snap)
}
}))
}
})
}
}