Consul is a distributed, highly available, and data center aware solution to connect and configure applications across dynamic, distributed infrastructure.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2527 lines
94 KiB

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.33.0
// protoc (unknown)
// source: pbresource/resource.proto
// For more information, see: https://github.com/hashicorp/consul/tree/main/docs/resources
package pbresource
import (
_ "github.com/hashicorp/consul/proto-public/annotations/ratelimit"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
anypb "google.golang.org/protobuf/types/known/anypb"
timestamppb "google.golang.org/protobuf/types/known/timestamppb"
reflect "reflect"
sync "sync"
)
const (
// Verify that this generated code is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(20 - protoimpl.MinVersion)
// Verify that runtime/protoimpl is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(protoimpl.MaxVersion - 20)
)
// State represents the state of the condition (i.e. true/false/unknown).
type Condition_State int32
const (
// STATE_UNKNOWN means that the state of the condition is unknown.
//
// buf:lint:ignore ENUM_ZERO_VALUE_SUFFIX
Condition_STATE_UNKNOWN Condition_State = 0
// STATE_TRUE means that the state of the condition is true.
Condition_STATE_TRUE Condition_State = 1
// STATE_FALSE means that the state of the condition is false.
Condition_STATE_FALSE Condition_State = 2
)
// Enum value maps for Condition_State.
var (
Condition_State_name = map[int32]string{
0: "STATE_UNKNOWN",
1: "STATE_TRUE",
2: "STATE_FALSE",
}
Condition_State_value = map[string]int32{
"STATE_UNKNOWN": 0,
"STATE_TRUE": 1,
"STATE_FALSE": 2,
}
)
func (x Condition_State) Enum() *Condition_State {
p := new(Condition_State)
*p = x
return p
}
func (x Condition_State) String() string {
return protoimpl.X.EnumStringOf(x.Descriptor(), protoreflect.EnumNumber(x))
}
func (Condition_State) Descriptor() protoreflect.EnumDescriptor {
return file_pbresource_resource_proto_enumTypes[0].Descriptor()
}
func (Condition_State) Type() protoreflect.EnumType {
return &file_pbresource_resource_proto_enumTypes[0]
}
func (x Condition_State) Number() protoreflect.EnumNumber {
return protoreflect.EnumNumber(x)
}
// Deprecated: Use Condition_State.Descriptor instead.
func (Condition_State) EnumDescriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{5, 0}
}
// Type describes a resource's type. It follows the GVK (Group Version Kind)
// [pattern](https://book.kubebuilder.io/cronjob-tutorial/gvks.html) established
// by Kubernetes.
type Type struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Group describes the area of functionality to which this resource type
// relates (e.g. "catalog", "authorization").
Group string `protobuf:"bytes,1,opt,name=group,proto3" json:"group,omitempty"`
// GroupVersion is incremented when sweeping or backward-incompatible changes
// are made to the group's resource types.
GroupVersion string `protobuf:"bytes,2,opt,name=group_version,json=groupVersion,proto3" json:"group_version,omitempty"`
// Kind identifies the specific resource type within the group.
Kind string `protobuf:"bytes,3,opt,name=kind,proto3" json:"kind,omitempty"`
}
func (x *Type) Reset() {
*x = Type{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[0]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Type) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Type) ProtoMessage() {}
func (x *Type) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[0]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Type.ProtoReflect.Descriptor instead.
func (*Type) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{0}
}
func (x *Type) GetGroup() string {
if x != nil {
return x.Group
}
return ""
}
func (x *Type) GetGroupVersion() string {
if x != nil {
return x.GroupVersion
}
return ""
}
func (x *Type) GetKind() string {
if x != nil {
return x.Kind
}
return ""
}
// Tenancy describes the tenancy units in which the resource resides.
type Tenancy struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Partition is the topmost administrative boundary within a cluster.
// https://developer.hashicorp.com/consul/docs/enterprise/admin-partitions
//
// When using the List and WatchList endpoints, provide the wildcard value "*"
// to list resources across all partitions.
Partition string `protobuf:"bytes,1,opt,name=partition,proto3" json:"partition,omitempty"`
// Namespace further isolates resources within a partition.
// https://developer.hashicorp.com/consul/docs/enterprise/namespaces
//
// When using the List and WatchList endpoints, provide the wildcard value "*"
// to list resources across all namespaces.
Namespace string `protobuf:"bytes,2,opt,name=namespace,proto3" json:"namespace,omitempty"`
}
func (x *Tenancy) Reset() {
*x = Tenancy{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[1]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Tenancy) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Tenancy) ProtoMessage() {}
func (x *Tenancy) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[1]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Tenancy.ProtoReflect.Descriptor instead.
func (*Tenancy) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{1}
}
func (x *Tenancy) GetPartition() string {
if x != nil {
return x.Partition
}
return ""
}
func (x *Tenancy) GetNamespace() string {
if x != nil {
return x.Namespace
}
return ""
}
// ID uniquely identifies a resource.
type ID struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Uid is the unique internal identifier we gave to the resource.
//
// It is primarily used to tell the difference between the current resource
// and previous deleted resources with the same user-given name.
//
// Concretely, Uid is a [ULID](https://github.com/ulid/spec) and you can treat
// its timestamp component as the resource's creation time.
Uid string `protobuf:"bytes,1,opt,name=uid,proto3" json:"uid,omitempty"`
// Name is the user-given name of the resource (e.g. the "billing" service).
Name string `protobuf:"bytes,2,opt,name=name,proto3" json:"name,omitempty"`
// Type identifies the resource's type.
Type *Type `protobuf:"bytes,3,opt,name=type,proto3" json:"type,omitempty"`
// Tenancy identifies the tenancy units (i.e. partition, namespace) in which
// the resource resides.
Tenancy *Tenancy `protobuf:"bytes,4,opt,name=tenancy,proto3" json:"tenancy,omitempty"`
}
func (x *ID) Reset() {
*x = ID{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[2]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ID) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ID) ProtoMessage() {}
func (x *ID) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[2]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ID.ProtoReflect.Descriptor instead.
func (*ID) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{2}
}
func (x *ID) GetUid() string {
if x != nil {
return x.Uid
}
return ""
}
func (x *ID) GetName() string {
if x != nil {
return x.Name
}
return ""
}
func (x *ID) GetType() *Type {
if x != nil {
return x.Type
}
return nil
}
func (x *ID) GetTenancy() *Tenancy {
if x != nil {
return x.Tenancy
}
return nil
}
// Resource describes a resource of a known type managed by Consul.
type Resource struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// ID uniquely identifies the resource.
Id *ID `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
// Owner (optionally) describes which resource "owns" this resource, it is
// immutable and can only be set on resource creation. Owned resources will
// be automatically deleted when their owner is deleted.
Owner *ID `protobuf:"bytes,2,opt,name=owner,proto3" json:"owner,omitempty"`
// Version is the low-level version identifier used by the storage backend
// in CAS (Compare-And-Swap) operations. It will change when the resource is
// modified in any way, including status updates.
//
// When calling the Write endpoint, providing a non-blank version will perform
// a CAS (Compare-And-Swap) write, which will result in an Aborted error code
// if the given version doesn't match what is stored.
Version string `protobuf:"bytes,3,opt,name=version,proto3" json:"version,omitempty"`
// Generation is incremented whenever the resource's content (i.e. not its
// status) is modified. You can think of it as being the "user version".
//
// Concretely, Generation is a [ULID](https://github.com/ulid/spec) and you
// can treat its timestamp component as the resource's modification time.
Generation string `protobuf:"bytes,4,opt,name=generation,proto3" json:"generation,omitempty"`
// Metadata contains key/value pairs of arbitrary metadata about the resource.
// "deletionTimestamp" and "finalizers" keys are reserved for internal use.
Metadata map[string]string `protobuf:"bytes,5,rep,name=metadata,proto3" json:"metadata,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
// Status is used by controllers to communicate the result of attempting to
// reconcile and apply the resource (e.g. surface semantic validation errors)
// with users and other controllers. Each status is identified by a unique key
// and should only ever be updated by one controller.
//
// Status can only be updated via the WriteStatus endpoint. Attempting to do
// so via the Write endpoint will result in an InvalidArgument error code.
Status map[string]*Status `protobuf:"bytes,6,rep,name=status,proto3" json:"status,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
// Data contains the resource's type-specific content.
Data *anypb.Any `protobuf:"bytes,7,opt,name=data,proto3" json:"data,omitempty"`
}
func (x *Resource) Reset() {
*x = Resource{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[3]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Resource) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Resource) ProtoMessage() {}
func (x *Resource) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[3]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Resource.ProtoReflect.Descriptor instead.
func (*Resource) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{3}
}
func (x *Resource) GetId() *ID {
if x != nil {
return x.Id
}
return nil
}
func (x *Resource) GetOwner() *ID {
if x != nil {
return x.Owner
}
return nil
}
func (x *Resource) GetVersion() string {
if x != nil {
return x.Version
}
return ""
}
func (x *Resource) GetGeneration() string {
if x != nil {
return x.Generation
}
return ""
}
func (x *Resource) GetMetadata() map[string]string {
if x != nil {
return x.Metadata
}
return nil
}
func (x *Resource) GetStatus() map[string]*Status {
if x != nil {
return x.Status
}
return nil
}
func (x *Resource) GetData() *anypb.Any {
if x != nil {
return x.Data
}
return nil
}
// Status is used by controllers to communicate the result of attempting to
// reconcile and apply a resource (e.g. surface semantic validation errors)
// with users and other controllers.
type Status struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// ObservedGeneration identifies which generation of a resource this status
// related to. It can be used to determine whether the current generation of
// a resource has been reconciled.
ObservedGeneration string `protobuf:"bytes,1,opt,name=observed_generation,json=observedGeneration,proto3" json:"observed_generation,omitempty"`
// Conditions contains a set of discreet observations about the resource in
// relation to the current state of the system (e.g. it is semantically valid).
Conditions []*Condition `protobuf:"bytes,2,rep,name=conditions,proto3" json:"conditions,omitempty"`
// UpdatedAt is the time at which the status was last written.
UpdatedAt *timestamppb.Timestamp `protobuf:"bytes,3,opt,name=updated_at,json=updatedAt,proto3" json:"updated_at,omitempty"`
}
func (x *Status) Reset() {
*x = Status{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[4]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Status) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Status) ProtoMessage() {}
func (x *Status) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[4]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Status.ProtoReflect.Descriptor instead.
func (*Status) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{4}
}
func (x *Status) GetObservedGeneration() string {
if x != nil {
return x.ObservedGeneration
}
return ""
}
func (x *Status) GetConditions() []*Condition {
if x != nil {
return x.Conditions
}
return nil
}
func (x *Status) GetUpdatedAt() *timestamppb.Timestamp {
if x != nil {
return x.UpdatedAt
}
return nil
}
// Condition represents a discreet observation about a resource in relation to
// the current state of the system.
//
// It is heavily inspired by Kubernetes' [conditions](https://bit.ly/3H9Y6IK)
// and the Gateway API [types and reasons](https://bit.ly/3n2PPiP).
type Condition struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Type identifies the type of condition (e.g. "Invalid", "ResolvedRefs").
Type string `protobuf:"bytes,1,opt,name=type,proto3" json:"type,omitempty"`
// State represents the state of the condition (i.e. true/false/unknown).
State Condition_State `protobuf:"varint,2,opt,name=state,proto3,enum=hashicorp.consul.resource.Condition_State" json:"state,omitempty"`
// Reason provides more machine-readable details about the condition (e.g.
// "InvalidProtocol").
Reason string `protobuf:"bytes,3,opt,name=reason,proto3" json:"reason,omitempty"`
// Message contains a human-friendly description of the status.
Message string `protobuf:"bytes,4,opt,name=message,proto3" json:"message,omitempty"`
// Resource identifies which resource this condition relates to, when it is
// not the core resource itself.
Resource *Reference `protobuf:"bytes,5,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *Condition) Reset() {
*x = Condition{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[5]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Condition) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Condition) ProtoMessage() {}
func (x *Condition) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[5]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Condition.ProtoReflect.Descriptor instead.
func (*Condition) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{5}
}
func (x *Condition) GetType() string {
if x != nil {
return x.Type
}
return ""
}
func (x *Condition) GetState() Condition_State {
if x != nil {
return x.State
}
return Condition_STATE_UNKNOWN
}
func (x *Condition) GetReason() string {
if x != nil {
return x.Reason
}
return ""
}
func (x *Condition) GetMessage() string {
if x != nil {
return x.Message
}
return ""
}
func (x *Condition) GetResource() *Reference {
if x != nil {
return x.Resource
}
return nil
}
// Reference identifies which resource a condition relates to, when it is not
// the core resource itself.
type Reference struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Type identifies the resource's type.
Type *Type `protobuf:"bytes,1,opt,name=type,proto3" json:"type,omitempty"`
// Tenancy identifies the tenancy units (i.e. partition, namespace) in which
// the resource resides.
Tenancy *Tenancy `protobuf:"bytes,2,opt,name=tenancy,proto3" json:"tenancy,omitempty"`
// Name is the user-given name of the resource (e.g. the "billing" service).
Name string `protobuf:"bytes,3,opt,name=name,proto3" json:"name,omitempty"`
// Section identifies which part of the resource the condition relates to.
Section string `protobuf:"bytes,4,opt,name=section,proto3" json:"section,omitempty"`
}
func (x *Reference) Reset() {
*x = Reference{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[6]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Reference) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Reference) ProtoMessage() {}
func (x *Reference) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[6]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Reference.ProtoReflect.Descriptor instead.
func (*Reference) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{6}
}
func (x *Reference) GetType() *Type {
if x != nil {
return x.Type
}
return nil
}
func (x *Reference) GetTenancy() *Tenancy {
if x != nil {
return x.Tenancy
}
return nil
}
func (x *Reference) GetName() string {
if x != nil {
return x.Name
}
return ""
}
func (x *Reference) GetSection() string {
if x != nil {
return x.Section
}
return ""
}
// Tombstone represents a promise to delete all of a resource's immediately
// owned (child) resources, if any.
type Tombstone struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Owner resource identifier.
Owner *ID `protobuf:"bytes,1,opt,name=owner,proto3" json:"owner,omitempty"`
}
func (x *Tombstone) Reset() {
*x = Tombstone{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[7]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Tombstone) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Tombstone) ProtoMessage() {}
func (x *Tombstone) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[7]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Tombstone.ProtoReflect.Descriptor instead.
func (*Tombstone) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{7}
}
func (x *Tombstone) GetOwner() *ID {
if x != nil {
return x.Owner
}
return nil
}
// ReadRequest contains the parameters to the Read endpoint.
type ReadRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// ID of the resource.
Id *ID `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
}
func (x *ReadRequest) Reset() {
*x = ReadRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[8]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ReadRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ReadRequest) ProtoMessage() {}
func (x *ReadRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[8]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ReadRequest.ProtoReflect.Descriptor instead.
func (*ReadRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{8}
}
func (x *ReadRequest) GetId() *ID {
if x != nil {
return x.Id
}
return nil
}
// ReadResponse contains the results of calling the Read endpoint.
type ReadResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Resource that was read.
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *ReadResponse) Reset() {
*x = ReadResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[9]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ReadResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ReadResponse) ProtoMessage() {}
func (x *ReadResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[9]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ReadResponse.ProtoReflect.Descriptor instead.
func (*ReadResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{9}
}
func (x *ReadResponse) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// ListRequest contains the parameters to the List endpoint.
type ListRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Type of resource to list.
Type *Type `protobuf:"bytes,1,opt,name=type,proto3" json:"type,omitempty"`
// Tenancy units in which to list resources. To list resources in all units,
// provide the wildcard "*" value.
Tenancy *Tenancy `protobuf:"bytes,2,opt,name=tenancy,proto3" json:"tenancy,omitempty"`
// NamePrefix filters the results to those with a name beginning with the
// given prefix.
NamePrefix string `protobuf:"bytes,3,opt,name=name_prefix,json=namePrefix,proto3" json:"name_prefix,omitempty"`
}
func (x *ListRequest) Reset() {
*x = ListRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[10]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ListRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ListRequest) ProtoMessage() {}
func (x *ListRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[10]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ListRequest.ProtoReflect.Descriptor instead.
func (*ListRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{10}
}
func (x *ListRequest) GetType() *Type {
if x != nil {
return x.Type
}
return nil
}
func (x *ListRequest) GetTenancy() *Tenancy {
if x != nil {
return x.Tenancy
}
return nil
}
func (x *ListRequest) GetNamePrefix() string {
if x != nil {
return x.NamePrefix
}
return ""
}
// ListResponse contains the results of calling the List endpoint.
type ListResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Resources that were listed.
Resources []*Resource `protobuf:"bytes,1,rep,name=resources,proto3" json:"resources,omitempty"`
}
func (x *ListResponse) Reset() {
*x = ListResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[11]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ListResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ListResponse) ProtoMessage() {}
func (x *ListResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[11]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ListResponse.ProtoReflect.Descriptor instead.
func (*ListResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{11}
}
func (x *ListResponse) GetResources() []*Resource {
if x != nil {
return x.Resources
}
return nil
}
// ListByOwnerRequest contains the parameters to the ListByOwner endpoint.
type ListByOwnerRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
Owner *ID `protobuf:"bytes,1,opt,name=owner,proto3" json:"owner,omitempty"`
}
func (x *ListByOwnerRequest) Reset() {
*x = ListByOwnerRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[12]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ListByOwnerRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ListByOwnerRequest) ProtoMessage() {}
func (x *ListByOwnerRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[12]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ListByOwnerRequest.ProtoReflect.Descriptor instead.
func (*ListByOwnerRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{12}
}
func (x *ListByOwnerRequest) GetOwner() *ID {
if x != nil {
return x.Owner
}
return nil
}
// ListByOwnerResponse contains the results of calling the ListByOwner endpoint.
type ListByOwnerResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Resources that were listed.
Resources []*Resource `protobuf:"bytes,1,rep,name=resources,proto3" json:"resources,omitempty"`
}
func (x *ListByOwnerResponse) Reset() {
*x = ListByOwnerResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[13]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *ListByOwnerResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*ListByOwnerResponse) ProtoMessage() {}
func (x *ListByOwnerResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[13]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use ListByOwnerResponse.ProtoReflect.Descriptor instead.
func (*ListByOwnerResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{13}
}
func (x *ListByOwnerResponse) GetResources() []*Resource {
if x != nil {
return x.Resources
}
return nil
}
// WriteRequest contains the parameters to the Write endpoint.
type WriteRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Resource to write.
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *WriteRequest) Reset() {
*x = WriteRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[14]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WriteRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WriteRequest) ProtoMessage() {}
func (x *WriteRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[14]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WriteRequest.ProtoReflect.Descriptor instead.
func (*WriteRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{14}
}
func (x *WriteRequest) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// WriteResponse contains the results of calling the Write endpoint.
type WriteResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Resource that was written.
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *WriteResponse) Reset() {
*x = WriteResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[15]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WriteResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WriteResponse) ProtoMessage() {}
func (x *WriteResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[15]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WriteResponse.ProtoReflect.Descriptor instead.
func (*WriteResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{15}
}
func (x *WriteResponse) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// WriteStatusRequest contains the parameters to the WriteStatus endpoint.
type WriteStatusRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// ID of the resource to which the status will be written. Must contain a Uid.
Id *ID `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
// Version may be provided to perform a CAS (Compare-And-Swap) update of the
// status. If the given version doesn't match what is currently stored, an
// Aborted error code will be returned.
//
// Note: in most cases, CAS status updates are not necessary because updates
// are scoped to a specific status key and controllers are leader-elected so
// there is no chance of a conflict.
Version string `protobuf:"bytes,2,opt,name=version,proto3" json:"version,omitempty"`
// Key identifies which status will be written. Generally, each controller
// should write 1 status which it owns exclusively (i.e. no other controller
// updates it).
Key string `protobuf:"bytes,3,opt,name=key,proto3" json:"key,omitempty"`
// Status that will be written to the resource.
Status *Status `protobuf:"bytes,4,opt,name=status,proto3" json:"status,omitempty"`
}
func (x *WriteStatusRequest) Reset() {
*x = WriteStatusRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[16]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WriteStatusRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WriteStatusRequest) ProtoMessage() {}
func (x *WriteStatusRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[16]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WriteStatusRequest.ProtoReflect.Descriptor instead.
func (*WriteStatusRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{16}
}
func (x *WriteStatusRequest) GetId() *ID {
if x != nil {
return x.Id
}
return nil
}
func (x *WriteStatusRequest) GetVersion() string {
if x != nil {
return x.Version
}
return ""
}
func (x *WriteStatusRequest) GetKey() string {
if x != nil {
return x.Key
}
return ""
}
func (x *WriteStatusRequest) GetStatus() *Status {
if x != nil {
return x.Status
}
return nil
}
// WriteStatusResponse contains the results of calling the WriteStatus endpoint.
type WriteStatusResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Resource to which the status was written.
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *WriteStatusResponse) Reset() {
*x = WriteStatusResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[17]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WriteStatusResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WriteStatusResponse) ProtoMessage() {}
func (x *WriteStatusResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[17]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WriteStatusResponse.ProtoReflect.Descriptor instead.
func (*WriteStatusResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{17}
}
func (x *WriteStatusResponse) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// DeleteRequest contains the parameters to the Delete endpoint.
type DeleteRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// ID of the resource that will be deleted.
Id *ID `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
// Version may be provided to perform a CAS (Compare-And-Swap) deletion of the
// resource. If the given version doesn't match what is currently stored, an
// Aborted error code will be returned.
Version string `protobuf:"bytes,2,opt,name=version,proto3" json:"version,omitempty"`
}
func (x *DeleteRequest) Reset() {
*x = DeleteRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[18]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *DeleteRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*DeleteRequest) ProtoMessage() {}
func (x *DeleteRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[18]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use DeleteRequest.ProtoReflect.Descriptor instead.
func (*DeleteRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{18}
}
func (x *DeleteRequest) GetId() *ID {
if x != nil {
return x.Id
}
return nil
}
func (x *DeleteRequest) GetVersion() string {
if x != nil {
return x.Version
}
return ""
}
// DeleteResponse contains the results of calling the Delete endpoint.
type DeleteResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
}
func (x *DeleteResponse) Reset() {
*x = DeleteResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[19]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *DeleteResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*DeleteResponse) ProtoMessage() {}
func (x *DeleteResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[19]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use DeleteResponse.ProtoReflect.Descriptor instead.
func (*DeleteResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{19}
}
// WatchListRequest contains the parameters to the WatchList endpoint.
type WatchListRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// Type of resource to watch.
Type *Type `protobuf:"bytes,1,opt,name=type,proto3" json:"type,omitempty"`
// Tenancy units in which to watch resources. To list resources in all units,
// provide the wildcard "*" value.
Tenancy *Tenancy `protobuf:"bytes,2,opt,name=tenancy,proto3" json:"tenancy,omitempty"`
// NamePrefix filters the results to those with a name beginning with the
// given prefix.
NamePrefix string `protobuf:"bytes,3,opt,name=name_prefix,json=namePrefix,proto3" json:"name_prefix,omitempty"`
}
func (x *WatchListRequest) Reset() {
*x = WatchListRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[20]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WatchListRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WatchListRequest) ProtoMessage() {}
func (x *WatchListRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[20]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WatchListRequest.ProtoReflect.Descriptor instead.
func (*WatchListRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{20}
}
func (x *WatchListRequest) GetType() *Type {
if x != nil {
return x.Type
}
return nil
}
func (x *WatchListRequest) GetTenancy() *Tenancy {
if x != nil {
return x.Tenancy
}
return nil
}
func (x *WatchListRequest) GetNamePrefix() string {
if x != nil {
return x.NamePrefix
}
return ""
}
// WatchEvent is emitted on the WatchList stream when a resource changes.
type WatchEvent struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
// Types that are assignable to Event:
//
// *WatchEvent_Upsert_
// *WatchEvent_Delete_
// *WatchEvent_EndOfSnapshot_
Event isWatchEvent_Event `protobuf_oneof:"event"`
}
func (x *WatchEvent) Reset() {
*x = WatchEvent{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[21]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WatchEvent) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WatchEvent) ProtoMessage() {}
func (x *WatchEvent) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[21]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WatchEvent.ProtoReflect.Descriptor instead.
func (*WatchEvent) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{21}
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
func (m *WatchEvent) GetEvent() isWatchEvent_Event {
if m != nil {
return m.Event
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
return nil
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
func (x *WatchEvent) GetUpsert() *WatchEvent_Upsert {
if x, ok := x.GetEvent().(*WatchEvent_Upsert_); ok {
return x.Upsert
}
return nil
}
func (x *WatchEvent) GetDelete() *WatchEvent_Delete {
if x, ok := x.GetEvent().(*WatchEvent_Delete_); ok {
return x.Delete
}
return nil
}
func (x *WatchEvent) GetEndOfSnapshot() *WatchEvent_EndOfSnapshot {
if x, ok := x.GetEvent().(*WatchEvent_EndOfSnapshot_); ok {
return x.EndOfSnapshot
}
return nil
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
type isWatchEvent_Event interface {
isWatchEvent_Event()
}
type WatchEvent_Upsert_ struct {
Upsert *WatchEvent_Upsert `protobuf:"bytes,1,opt,name=upsert,proto3,oneof"`
}
type WatchEvent_Delete_ struct {
Delete *WatchEvent_Delete `protobuf:"bytes,2,opt,name=delete,proto3,oneof"`
}
type WatchEvent_EndOfSnapshot_ struct {
EndOfSnapshot *WatchEvent_EndOfSnapshot `protobuf:"bytes,3,opt,name=end_of_snapshot,json=endOfSnapshot,proto3,oneof"`
}
func (*WatchEvent_Upsert_) isWatchEvent_Event() {}
func (*WatchEvent_Delete_) isWatchEvent_Event() {}
func (*WatchEvent_EndOfSnapshot_) isWatchEvent_Event() {}
// MutateAndValidateRequest contains the parameters to the MutateAndValidate endpoint.
type MutateAndValidateRequest struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *MutateAndValidateRequest) Reset() {
*x = MutateAndValidateRequest{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[22]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *MutateAndValidateRequest) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*MutateAndValidateRequest) ProtoMessage() {}
func (x *MutateAndValidateRequest) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[22]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use MutateAndValidateRequest.ProtoReflect.Descriptor instead.
func (*MutateAndValidateRequest) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{22}
}
func (x *MutateAndValidateRequest) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// MutateAndValidateResponse contains the results of calling the MutateAndValidate endpoint.
type MutateAndValidateResponse struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *MutateAndValidateResponse) Reset() {
*x = MutateAndValidateResponse{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[23]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *MutateAndValidateResponse) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*MutateAndValidateResponse) ProtoMessage() {}
func (x *MutateAndValidateResponse) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[23]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use MutateAndValidateResponse.ProtoReflect.Descriptor instead.
func (*MutateAndValidateResponse) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{23}
}
func (x *MutateAndValidateResponse) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
// Upsert indicates that the resource was written (i.e. created or
// updated). All events from the initial state-of-the-world will be upsert
// events.
type WatchEvent_Upsert struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *WatchEvent_Upsert) Reset() {
*x = WatchEvent_Upsert{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[26]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WatchEvent_Upsert) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WatchEvent_Upsert) ProtoMessage() {}
func (x *WatchEvent_Upsert) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[26]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WatchEvent_Upsert.ProtoReflect.Descriptor instead.
func (*WatchEvent_Upsert) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{21, 0}
}
func (x *WatchEvent_Upsert) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// Delete indicates that the resource was deleted.
type WatchEvent_Delete struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
}
func (x *WatchEvent_Delete) Reset() {
*x = WatchEvent_Delete{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[27]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WatchEvent_Delete) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WatchEvent_Delete) ProtoMessage() {}
func (x *WatchEvent_Delete) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[27]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WatchEvent_Delete.ProtoReflect.Descriptor instead.
func (*WatchEvent_Delete) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{21, 1}
}
func (x *WatchEvent_Delete) GetResource() *Resource {
if x != nil {
return x.Resource
}
return nil
}
// EndOfSnapshot is sent to indicate that the initial snapshot events have
// been sent and future events will modify that set.
type WatchEvent_EndOfSnapshot struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
}
func (x *WatchEvent_EndOfSnapshot) Reset() {
*x = WatchEvent_EndOfSnapshot{}
if protoimpl.UnsafeEnabled {
mi := &file_pbresource_resource_proto_msgTypes[28]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *WatchEvent_EndOfSnapshot) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*WatchEvent_EndOfSnapshot) ProtoMessage() {}
func (x *WatchEvent_EndOfSnapshot) ProtoReflect() protoreflect.Message {
mi := &file_pbresource_resource_proto_msgTypes[28]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use WatchEvent_EndOfSnapshot.ProtoReflect.Descriptor instead.
func (*WatchEvent_EndOfSnapshot) Descriptor() ([]byte, []int) {
return file_pbresource_resource_proto_rawDescGZIP(), []int{21, 2}
}
var File_pbresource_resource_proto protoreflect.FileDescriptor
var file_pbresource_resource_proto_rawDesc = []byte{
0x0a, 0x19, 0x70, 0x62, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2f, 0x72, 0x65, 0x73,
0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x12, 0x19, 0x68, 0x61, 0x73,
0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x1a, 0x25, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x73, 0x2f, 0x72, 0x61, 0x74, 0x65, 0x6c, 0x69, 0x6d, 0x69, 0x74, 0x2f, 0x72, 0x61,
0x74, 0x65, 0x6c, 0x69, 0x6d, 0x69, 0x74, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x19, 0x67,
0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x61,
0x6e, 0x79, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x1f, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65,
0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74,
0x61, 0x6d, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x22, 0x55, 0x0a, 0x04, 0x54, 0x79, 0x70,
0x65, 0x12, 0x14, 0x0a, 0x05, 0x67, 0x72, 0x6f, 0x75, 0x70, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09,
0x52, 0x05, 0x67, 0x72, 0x6f, 0x75, 0x70, 0x12, 0x23, 0x0a, 0x0d, 0x67, 0x72, 0x6f, 0x75, 0x70,
0x5f, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0c,
0x67, 0x72, 0x6f, 0x75, 0x70, 0x56, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x12, 0x12, 0x0a, 0x04,
0x6b, 0x69, 0x6e, 0x64, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x04, 0x6b, 0x69, 0x6e, 0x64,
0x22, 0x45, 0x0a, 0x07, 0x54, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x12, 0x1c, 0x0a, 0x09, 0x70,
0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x09,
0x70, 0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x1c, 0x0a, 0x09, 0x6e, 0x61, 0x6d,
0x65, 0x73, 0x70, 0x61, 0x63, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x09, 0x6e, 0x61,
0x6d, 0x65, 0x73, 0x70, 0x61, 0x63, 0x65, 0x22, 0x9d, 0x01, 0x0a, 0x02, 0x49, 0x44, 0x12, 0x10,
0x0a, 0x03, 0x75, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x75, 0x69, 0x64,
0x12, 0x12, 0x0a, 0x04, 0x6e, 0x61, 0x6d, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x04,
0x6e, 0x61, 0x6d, 0x65, 0x12, 0x33, 0x0a, 0x04, 0x74, 0x79, 0x70, 0x65, 0x18, 0x03, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x1f, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x54,
0x79, 0x70, 0x65, 0x52, 0x04, 0x74, 0x79, 0x70, 0x65, 0x12, 0x3c, 0x0a, 0x07, 0x74, 0x65, 0x6e,
0x61, 0x6e, 0x63, 0x79, 0x18, 0x04, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x22, 0x2e, 0x68, 0x61, 0x73,
0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x54, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x52, 0x07,
0x74, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x22, 0x85, 0x04, 0x0a, 0x08, 0x52, 0x65, 0x73, 0x6f,
0x75, 0x72, 0x63, 0x65, 0x12, 0x2d, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b,
0x32, 0x1d, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e,
0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x49, 0x44, 0x52,
0x02, 0x69, 0x64, 0x12, 0x33, 0x0a, 0x05, 0x6f, 0x77, 0x6e, 0x65, 0x72, 0x18, 0x02, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x1d, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x49,
0x44, 0x52, 0x05, 0x6f, 0x77, 0x6e, 0x65, 0x72, 0x12, 0x18, 0x0a, 0x07, 0x76, 0x65, 0x72, 0x73,
0x69, 0x6f, 0x6e, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x76, 0x65, 0x72, 0x73, 0x69,
0x6f, 0x6e, 0x12, 0x1e, 0x0a, 0x0a, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x18, 0x04, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0a, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x12, 0x4d, 0x0a, 0x08, 0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61, 0x18, 0x05,
0x20, 0x03, 0x28, 0x0b, 0x32, 0x31, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70,
0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x4d, 0x65, 0x74, 0x61, 0x64, 0x61,
0x74, 0x61, 0x45, 0x6e, 0x74, 0x72, 0x79, 0x52, 0x08, 0x6d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74,
0x61, 0x12, 0x47, 0x0a, 0x06, 0x73, 0x74, 0x61, 0x74, 0x75, 0x73, 0x18, 0x06, 0x20, 0x03, 0x28,
0x0b, 0x32, 0x2f, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f,
0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x45, 0x6e, 0x74,
0x72, 0x79, 0x52, 0x06, 0x73, 0x74, 0x61, 0x74, 0x75, 0x73, 0x12, 0x28, 0x0a, 0x04, 0x64, 0x61,
0x74, 0x61, 0x18, 0x07, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x14, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c,
0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x41, 0x6e, 0x79, 0x52, 0x04,
0x64, 0x61, 0x74, 0x61, 0x1a, 0x3b, 0x0a, 0x0d, 0x4d, 0x65, 0x74, 0x61, 0x64, 0x61, 0x74, 0x61,
0x45, 0x6e, 0x74, 0x72, 0x79, 0x12, 0x10, 0x0a, 0x03, 0x6b, 0x65, 0x79, 0x18, 0x01, 0x20, 0x01,
0x28, 0x09, 0x52, 0x03, 0x6b, 0x65, 0x79, 0x12, 0x14, 0x0a, 0x05, 0x76, 0x61, 0x6c, 0x75, 0x65,
0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x05, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x02, 0x38,
0x01, 0x1a, 0x5c, 0x0a, 0x0b, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x45, 0x6e, 0x74, 0x72, 0x79,
0x12, 0x10, 0x0a, 0x03, 0x6b, 0x65, 0x79, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x6b,
0x65, 0x79, 0x12, 0x37, 0x0a, 0x05, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28,
0x0b, 0x32, 0x21, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f,
0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x53, 0x74,
0x61, 0x74, 0x75, 0x73, 0x52, 0x05, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x3a, 0x02, 0x38, 0x01, 0x22,
0xba, 0x01, 0x0a, 0x06, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x12, 0x2f, 0x0a, 0x13, 0x6f, 0x62,
0x73, 0x65, 0x72, 0x76, 0x65, 0x64, 0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x12, 0x6f, 0x62, 0x73, 0x65, 0x72, 0x76, 0x65,
0x64, 0x47, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x44, 0x0a, 0x0a, 0x63,
0x6f, 0x6e, 0x64, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x18, 0x02, 0x20, 0x03, 0x28, 0x0b, 0x32,
0x24, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x43, 0x6f, 0x6e, 0x64,
0x69, 0x74, 0x69, 0x6f, 0x6e, 0x52, 0x0a, 0x63, 0x6f, 0x6e, 0x64, 0x69, 0x74, 0x69, 0x6f, 0x6e,
0x73, 0x12, 0x39, 0x0a, 0x0a, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x64, 0x5f, 0x61, 0x74, 0x18,
0x03, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1a, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70,
0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x54, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d,
0x70, 0x52, 0x09, 0x75, 0x70, 0x64, 0x61, 0x74, 0x65, 0x64, 0x41, 0x74, 0x22, 0x92, 0x02, 0x0a,
0x09, 0x43, 0x6f, 0x6e, 0x64, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x12, 0x0a, 0x04, 0x74, 0x79,
0x70, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x09, 0x52, 0x04, 0x74, 0x79, 0x70, 0x65, 0x12, 0x40,
0x0a, 0x05, 0x73, 0x74, 0x61, 0x74, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28, 0x0e, 0x32, 0x2a, 0x2e,
0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c,
0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x43, 0x6f, 0x6e, 0x64, 0x69, 0x74,
0x69, 0x6f, 0x6e, 0x2e, 0x53, 0x74, 0x61, 0x74, 0x65, 0x52, 0x05, 0x73, 0x74, 0x61, 0x74, 0x65,
0x12, 0x16, 0x0a, 0x06, 0x72, 0x65, 0x61, 0x73, 0x6f, 0x6e, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09,
0x52, 0x06, 0x72, 0x65, 0x61, 0x73, 0x6f, 0x6e, 0x12, 0x18, 0x0a, 0x07, 0x6d, 0x65, 0x73, 0x73,
0x61, 0x67, 0x65, 0x18, 0x04, 0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x6d, 0x65, 0x73, 0x73, 0x61,
0x67, 0x65, 0x12, 0x40, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x05,
0x20, 0x01, 0x28, 0x0b, 0x32, 0x24, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70,
0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x2e, 0x52, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f,
0x75, 0x72, 0x63, 0x65, 0x22, 0x3b, 0x0a, 0x05, 0x53, 0x74, 0x61, 0x74, 0x65, 0x12, 0x11, 0x0a,
0x0d, 0x53, 0x54, 0x41, 0x54, 0x45, 0x5f, 0x55, 0x4e, 0x4b, 0x4e, 0x4f, 0x57, 0x4e, 0x10, 0x00,
0x12, 0x0e, 0x0a, 0x0a, 0x53, 0x54, 0x41, 0x54, 0x45, 0x5f, 0x54, 0x52, 0x55, 0x45, 0x10, 0x01,
0x12, 0x0f, 0x0a, 0x0b, 0x53, 0x54, 0x41, 0x54, 0x45, 0x5f, 0x46, 0x41, 0x4c, 0x53, 0x45, 0x10,
0x02, 0x22, 0xac, 0x01, 0x0a, 0x09, 0x52, 0x65, 0x66, 0x65, 0x72, 0x65, 0x6e, 0x63, 0x65, 0x12,
0x33, 0x0a, 0x04, 0x74, 0x79, 0x70, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1f, 0x2e,
0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c,
0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x54, 0x79, 0x70, 0x65, 0x52, 0x04,
0x74, 0x79, 0x70, 0x65, 0x12, 0x3c, 0x0a, 0x07, 0x74, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x18,
0x02, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x22, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72,
0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63,
0x65, 0x2e, 0x54, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x52, 0x07, 0x74, 0x65, 0x6e, 0x61, 0x6e,
0x63, 0x79, 0x12, 0x12, 0x0a, 0x04, 0x6e, 0x61, 0x6d, 0x65, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09,
0x52, 0x04, 0x6e, 0x61, 0x6d, 0x65, 0x12, 0x18, 0x0a, 0x07, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f,
0x6e, 0x18, 0x04, 0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x73, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e,
0x22, 0x40, 0x0a, 0x09, 0x54, 0x6f, 0x6d, 0x62, 0x73, 0x74, 0x6f, 0x6e, 0x65, 0x12, 0x33, 0x0a,
0x05, 0x6f, 0x77, 0x6e, 0x65, 0x72, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1d, 0x2e, 0x68,
0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e,
0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x49, 0x44, 0x52, 0x05, 0x6f, 0x77, 0x6e,
0x65, 0x72, 0x22, 0x3c, 0x0a, 0x0b, 0x52, 0x65, 0x61, 0x64, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73,
0x74, 0x12, 0x2d, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1d, 0x2e,
0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c,
0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x49, 0x44, 0x52, 0x02, 0x69, 0x64,
0x22, 0x4f, 0x0a, 0x0c, 0x52, 0x65, 0x61, 0x64, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65,
0x12, 0x3f, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x01, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52,
0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63,
0x65, 0x22, 0xa1, 0x01, 0x0a, 0x0b, 0x4c, 0x69, 0x73, 0x74, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73,
0x74, 0x12, 0x33, 0x0a, 0x04, 0x74, 0x79, 0x70, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32,
0x1f, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x54, 0x79, 0x70, 0x65,
0x52, 0x04, 0x74, 0x79, 0x70, 0x65, 0x12, 0x3c, 0x0a, 0x07, 0x74, 0x65, 0x6e, 0x61, 0x6e, 0x63,
0x79, 0x18, 0x02, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x22, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63,
0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75,
0x72, 0x63, 0x65, 0x2e, 0x54, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x52, 0x07, 0x74, 0x65, 0x6e,
0x61, 0x6e, 0x63, 0x79, 0x12, 0x1f, 0x0a, 0x0b, 0x6e, 0x61, 0x6d, 0x65, 0x5f, 0x70, 0x72, 0x65,
0x66, 0x69, 0x78, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0a, 0x6e, 0x61, 0x6d, 0x65, 0x50,
0x72, 0x65, 0x66, 0x69, 0x78, 0x22, 0x51, 0x0a, 0x0c, 0x4c, 0x69, 0x73, 0x74, 0x52, 0x65, 0x73,
0x70, 0x6f, 0x6e, 0x73, 0x65, 0x12, 0x41, 0x0a, 0x09, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63,
0x65, 0x73, 0x18, 0x01, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69,
0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f,
0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x09, 0x72,
0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x73, 0x22, 0x49, 0x0a, 0x12, 0x4c, 0x69, 0x73, 0x74,
0x42, 0x79, 0x4f, 0x77, 0x6e, 0x65, 0x72, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x33,
0x0a, 0x05, 0x6f, 0x77, 0x6e, 0x65, 0x72, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x1d, 0x2e,
0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c,
0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x49, 0x44, 0x52, 0x05, 0x6f, 0x77,
0x6e, 0x65, 0x72, 0x22, 0x58, 0x0a, 0x13, 0x4c, 0x69, 0x73, 0x74, 0x42, 0x79, 0x4f, 0x77, 0x6e,
0x65, 0x72, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x12, 0x41, 0x0a, 0x09, 0x72, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x73, 0x18, 0x01, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x23, 0x2e,
0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c,
0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72,
0x63, 0x65, 0x52, 0x09, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x73, 0x22, 0x4f, 0x0a,
0x0c, 0x57, 0x72, 0x69, 0x74, 0x65, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x3f, 0x0a,
0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32,
0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65, 0x73, 0x6f,
0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x22, 0x50,
0x0a, 0x0d, 0x57, 0x72, 0x69, 0x74, 0x65, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x12,
0x3f, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28,
0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f,
0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x22, 0xaa, 0x01, 0x0a, 0x12, 0x57, 0x72, 0x69, 0x74, 0x65, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73,
0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x2d, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20,
0x01, 0x28, 0x0b, 0x32, 0x1d, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e,
0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e,
0x49, 0x44, 0x52, 0x02, 0x69, 0x64, 0x12, 0x18, 0x0a, 0x07, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f,
0x6e, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e,
0x12, 0x10, 0x0a, 0x03, 0x6b, 0x65, 0x79, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x03, 0x6b,
0x65, 0x79, 0x12, 0x39, 0x0a, 0x06, 0x73, 0x74, 0x61, 0x74, 0x75, 0x73, 0x18, 0x04, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x21, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x53,
0x74, 0x61, 0x74, 0x75, 0x73, 0x52, 0x06, 0x73, 0x74, 0x61, 0x74, 0x75, 0x73, 0x22, 0x56, 0x0a,
0x13, 0x57, 0x72, 0x69, 0x74, 0x65, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x52, 0x65, 0x73, 0x70,
0x6f, 0x6e, 0x73, 0x65, 0x12, 0x3f, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f,
0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72,
0x63, 0x65, 0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73,
0x6f, 0x75, 0x72, 0x63, 0x65, 0x22, 0x58, 0x0a, 0x0d, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x52,
0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x2d, 0x0a, 0x02, 0x69, 0x64, 0x18, 0x01, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x1d, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x49,
0x44, 0x52, 0x02, 0x69, 0x64, 0x12, 0x18, 0x0a, 0x07, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e,
0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52, 0x07, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x22,
0x10, 0x0a, 0x0e, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73,
0x65, 0x22, 0xa6, 0x01, 0x0a, 0x10, 0x57, 0x61, 0x74, 0x63, 0x68, 0x4c, 0x69, 0x73, 0x74, 0x52,
0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x12, 0x33, 0x0a, 0x04, 0x74, 0x79, 0x70, 0x65, 0x18, 0x01,
0x20, 0x01, 0x28, 0x0b, 0x32, 0x1f, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70,
0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x2e, 0x54, 0x79, 0x70, 0x65, 0x52, 0x04, 0x74, 0x79, 0x70, 0x65, 0x12, 0x3c, 0x0a, 0x07, 0x74,
0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x18, 0x02, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x22, 0x2e, 0x68,
0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e,
0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x54, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79,
0x52, 0x07, 0x74, 0x65, 0x6e, 0x61, 0x6e, 0x63, 0x79, 0x12, 0x1f, 0x0a, 0x0b, 0x6e, 0x61, 0x6d,
0x65, 0x5f, 0x70, 0x72, 0x65, 0x66, 0x69, 0x78, 0x18, 0x03, 0x20, 0x01, 0x28, 0x09, 0x52, 0x0a,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x6e, 0x61, 0x6d, 0x65, 0x50, 0x72, 0x65, 0x66, 0x69, 0x78, 0x22, 0xab, 0x03, 0x0a, 0x0a, 0x57,
0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x12, 0x46, 0x0a, 0x06, 0x75, 0x70, 0x73,
0x65, 0x72, 0x74, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x2c, 0x2e, 0x68, 0x61, 0x73, 0x68,
0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x2e, 0x55, 0x70, 0x73, 0x65, 0x72, 0x74, 0x48, 0x00, 0x52, 0x06, 0x75, 0x70, 0x73, 0x65, 0x72,
0x74, 0x12, 0x46, 0x0a, 0x06, 0x64, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28,
0x0b, 0x32, 0x2c, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f,
0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57, 0x61,
0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x48,
0x00, 0x52, 0x06, 0x64, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x12, 0x5d, 0x0a, 0x0f, 0x65, 0x6e, 0x64,
0x5f, 0x6f, 0x66, 0x5f, 0x73, 0x6e, 0x61, 0x70, 0x73, 0x68, 0x6f, 0x74, 0x18, 0x03, 0x20, 0x01,
0x28, 0x0b, 0x32, 0x33, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57,
0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x2e, 0x45, 0x6e, 0x64, 0x4f, 0x66, 0x53,
0x6e, 0x61, 0x70, 0x73, 0x68, 0x6f, 0x74, 0x48, 0x00, 0x52, 0x0d, 0x65, 0x6e, 0x64, 0x4f, 0x66,
0x53, 0x6e, 0x61, 0x70, 0x73, 0x68, 0x6f, 0x74, 0x1a, 0x49, 0x0a, 0x06, 0x55, 0x70, 0x73, 0x65,
0x72, 0x74, 0x12, 0x3f, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x01,
0x20, 0x01, 0x28, 0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70,
0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75,
0x72, 0x63, 0x65, 0x1a, 0x49, 0x0a, 0x06, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x12, 0x3f, 0x0a,
0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32,
0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65, 0x73, 0x6f,
0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x1a, 0x0f,
0x0a, 0x0d, 0x45, 0x6e, 0x64, 0x4f, 0x66, 0x53, 0x6e, 0x61, 0x70, 0x73, 0x68, 0x6f, 0x74, 0x42,
0x07, 0x0a, 0x05, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x22, 0x5b, 0x0a, 0x18, 0x4d, 0x75, 0x74, 0x61,
0x74, 0x65, 0x41, 0x6e, 0x64, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61, 0x74, 0x65, 0x52, 0x65, 0x71,
0x75, 0x65, 0x73, 0x74, 0x12, 0x3f, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f,
0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72,
0x63, 0x65, 0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73,
0x6f, 0x75, 0x72, 0x63, 0x65, 0x22, 0x5c, 0x0a, 0x19, 0x4d, 0x75, 0x74, 0x61, 0x74, 0x65, 0x41,
0x6e, 0x64, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61, 0x74, 0x65, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e,
0x73, 0x65, 0x12, 0x3f, 0x0a, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x18, 0x01,
0x20, 0x01, 0x28, 0x0b, 0x32, 0x23, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70,
0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x52, 0x08, 0x72, 0x65, 0x73, 0x6f, 0x75,
0x72, 0x63, 0x65, 0x32, 0x8e, 0x07, 0x0a, 0x0f, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x53, 0x65, 0x72, 0x76, 0x69, 0x63, 0x65, 0x12, 0x61, 0x0a, 0x04, 0x52, 0x65, 0x61, 0x64, 0x12,
0x26, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x52, 0x65, 0x61, 0x64,
0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x27, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63,
0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75,
0x72, 0x63, 0x65, 0x2e, 0x52, 0x65, 0x61, 0x64, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65,
0x22, 0x08, 0xe2, 0x86, 0x04, 0x04, 0x08, 0x02, 0x10, 0x0b, 0x12, 0x64, 0x0a, 0x05, 0x57, 0x72,
0x69, 0x74, 0x65, 0x12, 0x27, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e,
0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x57, 0x72, 0x69, 0x74, 0x65, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x28, 0x2e, 0x68,
0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57, 0x72, 0x69, 0x74, 0x65, 0x52, 0x65,
0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x22, 0x08, 0xe2, 0x86, 0x04, 0x04, 0x08, 0x03, 0x10, 0x0b,
0x12, 0x76, 0x0a, 0x0b, 0x57, 0x72, 0x69, 0x74, 0x65, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x12,
0x2d, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57, 0x72, 0x69, 0x74,
0x65, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x2e,
0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57, 0x72, 0x69, 0x74, 0x65,
0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x22, 0x08,
0xe2, 0x86, 0x04, 0x04, 0x08, 0x03, 0x10, 0x0b, 0x12, 0x61, 0x0a, 0x04, 0x4c, 0x69, 0x73, 0x74,
0x12, 0x26, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e,
0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x4c, 0x69, 0x73,
0x74, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x27, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69,
0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f,
0x75, 0x72, 0x63, 0x65, 0x2e, 0x4c, 0x69, 0x73, 0x74, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73,
0x65, 0x22, 0x08, 0xe2, 0x86, 0x04, 0x04, 0x08, 0x02, 0x10, 0x0b, 0x12, 0x76, 0x0a, 0x0b, 0x4c,
0x69, 0x73, 0x74, 0x42, 0x79, 0x4f, 0x77, 0x6e, 0x65, 0x72, 0x12, 0x2d, 0x2e, 0x68, 0x61, 0x73,
0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x4c, 0x69, 0x73, 0x74, 0x42, 0x79, 0x4f, 0x77, 0x6e,
0x65, 0x72, 0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x2e, 0x2e, 0x68, 0x61, 0x73, 0x68,
0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73,
0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x4c, 0x69, 0x73, 0x74, 0x42, 0x79, 0x4f, 0x77, 0x6e, 0x65,
0x72, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x22, 0x08, 0xe2, 0x86, 0x04, 0x04, 0x08,
0x02, 0x10, 0x0b, 0x12, 0x67, 0x0a, 0x06, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x12, 0x28, 0x2e,
0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c,
0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65,
0x52, 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x29, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63,
0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75,
0x72, 0x63, 0x65, 0x2e, 0x44, 0x65, 0x6c, 0x65, 0x74, 0x65, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e,
0x73, 0x65, 0x22, 0x08, 0xe2, 0x86, 0x04, 0x04, 0x08, 0x03, 0x10, 0x0b, 0x12, 0x6b, 0x0a, 0x09,
0x57, 0x61, 0x74, 0x63, 0x68, 0x4c, 0x69, 0x73, 0x74, 0x12, 0x2b, 0x2e, 0x68, 0x61, 0x73, 0x68,
0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73,
0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x57, 0x61, 0x74, 0x63, 0x68, 0x4c, 0x69, 0x73, 0x74, 0x52,
0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x1a, 0x25, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f,
0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72,
0x63, 0x65, 0x2e, 0x57, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x22, 0x08, 0xe2,
0x86, 0x04, 0x04, 0x08, 0x02, 0x10, 0x0b, 0x30, 0x01, 0x12, 0x88, 0x01, 0x0a, 0x11, 0x4d, 0x75,
0x74, 0x61, 0x74, 0x65, 0x41, 0x6e, 0x64, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61, 0x74, 0x65, 0x12,
0x33, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x2e, 0x4d, 0x75, 0x74, 0x61,
0x74, 0x65, 0x41, 0x6e, 0x64, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61, 0x74, 0x65, 0x52, 0x65, 0x71,
0x75, 0x65, 0x73, 0x74, 0x1a, 0x34, 0x2e, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70,
0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x2e, 0x4d, 0x75, 0x74, 0x61, 0x74, 0x65, 0x41, 0x6e, 0x64, 0x56, 0x61, 0x6c, 0x69, 0x64, 0x61,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
0x74, 0x65, 0x52, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x22, 0x08, 0xe2, 0x86, 0x04, 0x04,
0x08, 0x02, 0x10, 0x0b, 0x42, 0xe9, 0x01, 0x0a, 0x1d, 0x63, 0x6f, 0x6d, 0x2e, 0x68, 0x61, 0x73,
0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x72, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x42, 0x0d, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x50, 0x72, 0x6f, 0x74, 0x6f, 0x50, 0x01, 0x5a, 0x33, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e,
0x63, 0x6f, 0x6d, 0x2f, 0x68, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2f, 0x63, 0x6f,
0x6e, 0x73, 0x75, 0x6c, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x2d, 0x70, 0x75, 0x62, 0x6c, 0x69,
0x63, 0x2f, 0x70, 0x62, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0xa2, 0x02, 0x03, 0x48,
0x43, 0x52, 0xaa, 0x02, 0x19, 0x48, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x2e, 0x43,
0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x2e, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0xca, 0x02,
0x19, 0x48, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x5c, 0x43, 0x6f, 0x6e, 0x73, 0x75,
0x6c, 0x5c, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0xe2, 0x02, 0x25, 0x48, 0x61, 0x73,
0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x5c, 0x43, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x5c, 0x52, 0x65,
0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x5c, 0x47, 0x50, 0x42, 0x4d, 0x65, 0x74, 0x61, 0x64, 0x61,
0x74, 0x61, 0xea, 0x02, 0x1b, 0x48, 0x61, 0x73, 0x68, 0x69, 0x63, 0x6f, 0x72, 0x70, 0x3a, 0x3a,
0x43, 0x6f, 0x6e, 0x73, 0x75, 0x6c, 0x3a, 0x3a, 0x52, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65,
0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33,
}
var (
file_pbresource_resource_proto_rawDescOnce sync.Once
file_pbresource_resource_proto_rawDescData = file_pbresource_resource_proto_rawDesc
)
func file_pbresource_resource_proto_rawDescGZIP() []byte {
file_pbresource_resource_proto_rawDescOnce.Do(func() {
file_pbresource_resource_proto_rawDescData = protoimpl.X.CompressGZIP(file_pbresource_resource_proto_rawDescData)
})
return file_pbresource_resource_proto_rawDescData
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
var file_pbresource_resource_proto_enumTypes = make([]protoimpl.EnumInfo, 1)
var file_pbresource_resource_proto_msgTypes = make([]protoimpl.MessageInfo, 29)
var file_pbresource_resource_proto_goTypes = []interface{}{
(Condition_State)(0), // 0: hashicorp.consul.resource.Condition.State
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
(*Type)(nil), // 1: hashicorp.consul.resource.Type
(*Tenancy)(nil), // 2: hashicorp.consul.resource.Tenancy
(*ID)(nil), // 3: hashicorp.consul.resource.ID
(*Resource)(nil), // 4: hashicorp.consul.resource.Resource
(*Status)(nil), // 5: hashicorp.consul.resource.Status
(*Condition)(nil), // 6: hashicorp.consul.resource.Condition
(*Reference)(nil), // 7: hashicorp.consul.resource.Reference
(*Tombstone)(nil), // 8: hashicorp.consul.resource.Tombstone
(*ReadRequest)(nil), // 9: hashicorp.consul.resource.ReadRequest
(*ReadResponse)(nil), // 10: hashicorp.consul.resource.ReadResponse
(*ListRequest)(nil), // 11: hashicorp.consul.resource.ListRequest
(*ListResponse)(nil), // 12: hashicorp.consul.resource.ListResponse
(*ListByOwnerRequest)(nil), // 13: hashicorp.consul.resource.ListByOwnerRequest
(*ListByOwnerResponse)(nil), // 14: hashicorp.consul.resource.ListByOwnerResponse
(*WriteRequest)(nil), // 15: hashicorp.consul.resource.WriteRequest
(*WriteResponse)(nil), // 16: hashicorp.consul.resource.WriteResponse
(*WriteStatusRequest)(nil), // 17: hashicorp.consul.resource.WriteStatusRequest
(*WriteStatusResponse)(nil), // 18: hashicorp.consul.resource.WriteStatusResponse
(*DeleteRequest)(nil), // 19: hashicorp.consul.resource.DeleteRequest
(*DeleteResponse)(nil), // 20: hashicorp.consul.resource.DeleteResponse
(*WatchListRequest)(nil), // 21: hashicorp.consul.resource.WatchListRequest
(*WatchEvent)(nil), // 22: hashicorp.consul.resource.WatchEvent
(*MutateAndValidateRequest)(nil), // 23: hashicorp.consul.resource.MutateAndValidateRequest
(*MutateAndValidateResponse)(nil), // 24: hashicorp.consul.resource.MutateAndValidateResponse
nil, // 25: hashicorp.consul.resource.Resource.MetadataEntry
nil, // 26: hashicorp.consul.resource.Resource.StatusEntry
(*WatchEvent_Upsert)(nil), // 27: hashicorp.consul.resource.WatchEvent.Upsert
(*WatchEvent_Delete)(nil), // 28: hashicorp.consul.resource.WatchEvent.Delete
(*WatchEvent_EndOfSnapshot)(nil), // 29: hashicorp.consul.resource.WatchEvent.EndOfSnapshot
(*anypb.Any)(nil), // 30: google.protobuf.Any
(*timestamppb.Timestamp)(nil), // 31: google.protobuf.Timestamp
}
var file_pbresource_resource_proto_depIdxs = []int32{
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
1, // 0: hashicorp.consul.resource.ID.type:type_name -> hashicorp.consul.resource.Type
2, // 1: hashicorp.consul.resource.ID.tenancy:type_name -> hashicorp.consul.resource.Tenancy
3, // 2: hashicorp.consul.resource.Resource.id:type_name -> hashicorp.consul.resource.ID
3, // 3: hashicorp.consul.resource.Resource.owner:type_name -> hashicorp.consul.resource.ID
25, // 4: hashicorp.consul.resource.Resource.metadata:type_name -> hashicorp.consul.resource.Resource.MetadataEntry
26, // 5: hashicorp.consul.resource.Resource.status:type_name -> hashicorp.consul.resource.Resource.StatusEntry
30, // 6: hashicorp.consul.resource.Resource.data:type_name -> google.protobuf.Any
6, // 7: hashicorp.consul.resource.Status.conditions:type_name -> hashicorp.consul.resource.Condition
31, // 8: hashicorp.consul.resource.Status.updated_at:type_name -> google.protobuf.Timestamp
0, // 9: hashicorp.consul.resource.Condition.state:type_name -> hashicorp.consul.resource.Condition.State
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
7, // 10: hashicorp.consul.resource.Condition.resource:type_name -> hashicorp.consul.resource.Reference
1, // 11: hashicorp.consul.resource.Reference.type:type_name -> hashicorp.consul.resource.Type
2, // 12: hashicorp.consul.resource.Reference.tenancy:type_name -> hashicorp.consul.resource.Tenancy
3, // 13: hashicorp.consul.resource.Tombstone.owner:type_name -> hashicorp.consul.resource.ID
3, // 14: hashicorp.consul.resource.ReadRequest.id:type_name -> hashicorp.consul.resource.ID
4, // 15: hashicorp.consul.resource.ReadResponse.resource:type_name -> hashicorp.consul.resource.Resource
1, // 16: hashicorp.consul.resource.ListRequest.type:type_name -> hashicorp.consul.resource.Type
2, // 17: hashicorp.consul.resource.ListRequest.tenancy:type_name -> hashicorp.consul.resource.Tenancy
4, // 18: hashicorp.consul.resource.ListResponse.resources:type_name -> hashicorp.consul.resource.Resource
3, // 19: hashicorp.consul.resource.ListByOwnerRequest.owner:type_name -> hashicorp.consul.resource.ID
4, // 20: hashicorp.consul.resource.ListByOwnerResponse.resources:type_name -> hashicorp.consul.resource.Resource
4, // 21: hashicorp.consul.resource.WriteRequest.resource:type_name -> hashicorp.consul.resource.Resource
4, // 22: hashicorp.consul.resource.WriteResponse.resource:type_name -> hashicorp.consul.resource.Resource
3, // 23: hashicorp.consul.resource.WriteStatusRequest.id:type_name -> hashicorp.consul.resource.ID
5, // 24: hashicorp.consul.resource.WriteStatusRequest.status:type_name -> hashicorp.consul.resource.Status
4, // 25: hashicorp.consul.resource.WriteStatusResponse.resource:type_name -> hashicorp.consul.resource.Resource
3, // 26: hashicorp.consul.resource.DeleteRequest.id:type_name -> hashicorp.consul.resource.ID
1, // 27: hashicorp.consul.resource.WatchListRequest.type:type_name -> hashicorp.consul.resource.Type
2, // 28: hashicorp.consul.resource.WatchListRequest.tenancy:type_name -> hashicorp.consul.resource.Tenancy
27, // 29: hashicorp.consul.resource.WatchEvent.upsert:type_name -> hashicorp.consul.resource.WatchEvent.Upsert
28, // 30: hashicorp.consul.resource.WatchEvent.delete:type_name -> hashicorp.consul.resource.WatchEvent.Delete
29, // 31: hashicorp.consul.resource.WatchEvent.end_of_snapshot:type_name -> hashicorp.consul.resource.WatchEvent.EndOfSnapshot
4, // 32: hashicorp.consul.resource.MutateAndValidateRequest.resource:type_name -> hashicorp.consul.resource.Resource
4, // 33: hashicorp.consul.resource.MutateAndValidateResponse.resource:type_name -> hashicorp.consul.resource.Resource
5, // 34: hashicorp.consul.resource.Resource.StatusEntry.value:type_name -> hashicorp.consul.resource.Status
4, // 35: hashicorp.consul.resource.WatchEvent.Upsert.resource:type_name -> hashicorp.consul.resource.Resource
4, // 36: hashicorp.consul.resource.WatchEvent.Delete.resource:type_name -> hashicorp.consul.resource.Resource
9, // 37: hashicorp.consul.resource.ResourceService.Read:input_type -> hashicorp.consul.resource.ReadRequest
15, // 38: hashicorp.consul.resource.ResourceService.Write:input_type -> hashicorp.consul.resource.WriteRequest
17, // 39: hashicorp.consul.resource.ResourceService.WriteStatus:input_type -> hashicorp.consul.resource.WriteStatusRequest
11, // 40: hashicorp.consul.resource.ResourceService.List:input_type -> hashicorp.consul.resource.ListRequest
13, // 41: hashicorp.consul.resource.ResourceService.ListByOwner:input_type -> hashicorp.consul.resource.ListByOwnerRequest
19, // 42: hashicorp.consul.resource.ResourceService.Delete:input_type -> hashicorp.consul.resource.DeleteRequest
21, // 43: hashicorp.consul.resource.ResourceService.WatchList:input_type -> hashicorp.consul.resource.WatchListRequest
23, // 44: hashicorp.consul.resource.ResourceService.MutateAndValidate:input_type -> hashicorp.consul.resource.MutateAndValidateRequest
10, // 45: hashicorp.consul.resource.ResourceService.Read:output_type -> hashicorp.consul.resource.ReadResponse
16, // 46: hashicorp.consul.resource.ResourceService.Write:output_type -> hashicorp.consul.resource.WriteResponse
18, // 47: hashicorp.consul.resource.ResourceService.WriteStatus:output_type -> hashicorp.consul.resource.WriteStatusResponse
12, // 48: hashicorp.consul.resource.ResourceService.List:output_type -> hashicorp.consul.resource.ListResponse
14, // 49: hashicorp.consul.resource.ResourceService.ListByOwner:output_type -> hashicorp.consul.resource.ListByOwnerResponse
20, // 50: hashicorp.consul.resource.ResourceService.Delete:output_type -> hashicorp.consul.resource.DeleteResponse
22, // 51: hashicorp.consul.resource.ResourceService.WatchList:output_type -> hashicorp.consul.resource.WatchEvent
24, // 52: hashicorp.consul.resource.ResourceService.MutateAndValidate:output_type -> hashicorp.consul.resource.MutateAndValidateResponse
45, // [45:53] is the sub-list for method output_type
37, // [37:45] is the sub-list for method input_type
37, // [37:37] is the sub-list for extension type_name
37, // [37:37] is the sub-list for extension extendee
0, // [0:37] is the sub-list for field type_name
}
func init() { file_pbresource_resource_proto_init() }
func file_pbresource_resource_proto_init() {
if File_pbresource_resource_proto != nil {
return
}
if !protoimpl.UnsafeEnabled {
file_pbresource_resource_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Type); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Tenancy); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ID); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Resource); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Status); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Condition); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[6].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Reference); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[7].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Tombstone); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[8].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ReadRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[9].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ReadResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[10].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ListRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[11].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ListResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[12].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ListByOwnerRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[13].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*ListByOwnerResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[14].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WriteRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[15].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WriteResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[16].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WriteStatusRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[17].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WriteStatusResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[18].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*DeleteRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[19].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*DeleteResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[20].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WatchListRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[21].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WatchEvent); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[22].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*MutateAndValidateRequest); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[23].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*MutateAndValidateResponse); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
file_pbresource_resource_proto_msgTypes[26].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WatchEvent_Upsert); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[27].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WatchEvent_Delete); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
file_pbresource_resource_proto_msgTypes[28].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*WatchEvent_EndOfSnapshot); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
}
file_pbresource_resource_proto_msgTypes[21].OneofWrappers = []interface{}{
(*WatchEvent_Upsert_)(nil),
(*WatchEvent_Delete_)(nil),
(*WatchEvent_EndOfSnapshot_)(nil),
}
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_pbresource_resource_proto_rawDesc,
v2: ensure the controller caches are fully populated before first use (#20421) The new controller caches are initialized before the DependencyMappers or the Reconciler run, but importantly they are not populated. The expectation is that when the WatchList call is made to the resource service it will send an initial snapshot of all resources matching a single type, and then perpetually send UPSERT/DELETE events afterward. This initial snapshot will cycle through the caching layer and will catch it up to reflect the stored data. Critically the dependency mappers and reconcilers will race against the restoration of the caches on server startup or leader election. During this time it is possible a mapper or reconciler will use the cache to lookup a specific relationship and not find it. That very same reconciler may choose to then recompute some persisted resource and in effect rewind it to a prior computed state. Change - Since we are updating the behavior of the WatchList RPC, it was aligned to match that of pbsubscribe and pbpeerstream using a protobuf oneof instead of the enum+fields option. - The WatchList rpc now has 3 alternating response events: Upsert, Delete, EndOfSnapshot. When set the initial batch of "snapshot" Upserts sent on a new watch, those operations will be followed by an EndOfSnapshot event before beginning the never-ending sequence of Upsert/Delete events. - Within the Controller startup code we will launch N+1 goroutines to execute WatchList queries for the watched types. The UPSERTs will be applied to the nascent cache only (no mappers will execute). - Upon witnessing the END operation, those goroutines will terminate. - When all cache priming routines complete, then the normal set of N+1 long lived watch routines will launch to officially witness all events in the system using the primed cached.
10 months ago
NumEnums: 1,
NumMessages: 29,
NumExtensions: 0,
NumServices: 1,
},
GoTypes: file_pbresource_resource_proto_goTypes,
DependencyIndexes: file_pbresource_resource_proto_depIdxs,
EnumInfos: file_pbresource_resource_proto_enumTypes,
MessageInfos: file_pbresource_resource_proto_msgTypes,
}.Build()
File_pbresource_resource_proto = out.File
file_pbresource_resource_proto_rawDesc = nil
file_pbresource_resource_proto_goTypes = nil
file_pbresource_resource_proto_depIdxs = nil
}