Consul is a distributed, highly available, and data center aware solution to connect and configure applications across dynamic, distributed infrastructure.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

29 lines
1.7 KiB

wan federation via mesh gateways (#6884) This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch: There are several distinct chunks of code that are affected: * new flags and config options for the server * retry join WAN is slightly different * retry join code is shared to discover primary mesh gateways from secondary datacenters * because retry join logic runs in the *agent* and the results of that operation for primary mesh gateways are needed in the *server* there are some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur at multiple layers of abstraction just to pass the data down to the right layer. * new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers * the function signature for RPC dialing picked up a new required field (the node name of the destination) * several new RPCs for manipulating a FederationState object: `FederationState:{Apply,Get,List,ListMeshGateways}` * 3 read-only internal APIs for debugging use to invoke those RPCs from curl * raft and fsm changes to persist these FederationStates * replication for FederationStates as they are canonically stored in the Primary and replicated to the Secondaries. * a special derivative of anti-entropy that runs in secondaries to snapshot their local mesh gateway `CheckServiceNodes` and sync them into their upstream FederationState in the primary (this works in conjunction with the replication to distribute addresses for all mesh gateways in all DCs to all other DCs) * a "gateway locator" convenience object to make use of this data to choose the addresses of gateways to use for any given RPC or gossip operation to a remote DC. This gets data from the "retry join" logic in the agent and also directly calls into the FSM. * RPC (`:8300`) on the server sniffs the first byte of a new connection to determine if it's actually doing native TLS. If so it checks the ALPN header for protocol determination (just like how the existing system uses the type-byte marker). * 2 new kinds of protocols are exclusively decoded via this native TLS mechanism: one for ferrying "packet" operations (udp-like) from the gossip layer and one for "stream" operations (tcp-like). The packet operations re-use sockets (using length-prefixing) to cut down on TLS re-negotiation overhead. * the server instances specially wrap the `memberlist.NetTransport` when running with gateway federation enabled (in a `wanfed.Transport`). The general gist is that if it tries to dial a node in the SAME datacenter (deduced by looking at the suffix of the node name) there is no change. If dialing a DIFFERENT datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh gateways to eventually end up in a server's :8300 port. * a new flag when launching a mesh gateway via `consul connect envoy` to indicate that the servers are to be exposed. This sets a special service meta when registering the gateway into the catalog. * `proxycfg/xds` notice this metadata blob to activate additional watches for the FederationState objects as well as the location of all of the consul servers in that datacenter. * `xds:` if the extra metadata is in place additional clusters are defined in a DC to bulk sink all traffic to another DC's gateways. For the current datacenter we listen on a wildcard name (`server.<dc>.consul`) that load balances all servers as well as one mini-cluster per node (`<node>.server.<dc>.consul`) * the `consul tls cert create` command got a new flag (`-node`) to help create an additional SAN in certs that can be used with this flavor of federation.
5 years ago
-----BEGIN PRIVATE KEY-----
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDCpPFR+nO9czgQ
T1VLY/uCZ1O35ighW+pCuXJNSnO8xPtesXpdpV7HfijD2G9zza5kxC3Gvg9Lh2Hj
+6R1mTxJj15vqhVdj61hQrK/qbYh2NkH35BQP+z92i8x3qp0syzCZ+Q/0CdtawZQ
a4milVCGtwrsBOnETCN0Qh1AzR2mJVpB7TPE49R9BbFyGZEWlpQ1YKJu7lYDN+YF
lgI5sOcVZYI9NjT+mW+RS5Zrv0nFZFsmlYuXUN+mGXmr0rOS0Mdl1jr06EBJTxXI
myfuostb8dSAJ9E7nhv5VMYrdp0ooS3XSbOxparOkh4j2HwWY8Sv5AKqoTPjRceN
/a9n7+JFAgMBAAECggEAJv42He8nipdvbs0F0FGaTBh5DAk+ltg8CNvvyw4UO4fW
t7SkR+heIWbjscBFK5TTz/oBFaRzmfToJmz+GFT3X+Ep0QLovtKOsEJVXtIX25X+
fHZMCdeUmZJBDCOIUFKor9VyQ1pm26OqIyg37WsuM56twHSHhDygiaTJCXdN7j+J
3JSQTUXIQI4pjwMf7GmvwaxrbOI+luxyZioXPtUbnB6fmTXrGYykuif5TV+l+C25
QeH/nvcksJ/TnGbKFbdVVQJRSKl4oc4X3oHTujEIrn06/oQ98OGu2NTyuBTcmOGe
tkwjbMLabiPguPUml6xHh4U63oDnCVHirCrvUjlabQKBgQDpIgomMCQ7jZpkC2WO
dvtHiJPlqQAwsuhy8RziS+FKp6MZ/OcpKtTE8attxrZoEyPN9N9o4hsX2soKkWyc
IJZrppSBeBxyxAJqXXVfa1ATW4dvwCr1SUZIxqHchQFjtzsh1rTyqesCmPFvFL3w
EEIBRiadJtzQjjvbSTSXKelunwKBgQDVvHRDV60uJzJ7BmeYexzJscS9rwaMjoLI
m//4dv9u2wa3k10ZSrJQDjCT3KVzUR1x9kYp3VffAJcqYoRiHegrgBZfeziyr1gk
KbwnUN1lluPDp9f1XuZ70FTR9WW1p8vMtfFIBcEbgZHPFEr4p8KV7RuqbcHmsP8o
47VkL+UYmwKBgQDLMekIqdMauOwFIM3OYzPWgFrvw+Ivj+/8Jt0W/C4L5JrLDtvn
zLYQRdc14gmgInaFj1Wd09zraL3Kgj/YwKp6f4FWavrYqLC2RmkD1sO/a3pbU3Hd
wpTo33+6dY7le5Glh77E9oaoB+f++mQmNfVhqOQE+xdhC2duVJrq2hPkXwKBgGic
5db0OfpmCwo2F0yFrZB25xHkcfMn6ZFg8YdeTyWmJIKDqUSwz9fpKhOlIoHvyNa3
sJ3bDaBDvLltINiZRMLN3aV8PUMQGbcRils/9C0+Dlr8cvJRMcSWMn3Ve6PO7ixT
PTaAQoVBBOnzR8Ku8cnKFQl00Twlk64izeysmJhTAoGADeHDHJ9SZGXsWx4qfAP3
w/X0Z78hjj03F1wZy/WCT0fBo2ZPwgNvJycihs5nevvOxyh0T4kU9LcJpP4Xh9uy
xvcHXhfm730ihVVvrSbcqKipVtUQVQjKNkgi3LesUU6fVtR3cYeZjgFX8gK7qlyh
r/DA0g7GHp+pHoQ/koo15Io=
wan federation via mesh gateways (#6884) This is like a Möbius strip of code due to the fact that low-level components (serf/memberlist) are connected to high-level components (the catalog and mesh-gateways) in a twisty maze of references which make it hard to dive into. With that in mind here's a high level summary of what you'll find in the patch: There are several distinct chunks of code that are affected: * new flags and config options for the server * retry join WAN is slightly different * retry join code is shared to discover primary mesh gateways from secondary datacenters * because retry join logic runs in the *agent* and the results of that operation for primary mesh gateways are needed in the *server* there are some methods like `RefreshPrimaryGatewayFallbackAddresses` that must occur at multiple layers of abstraction just to pass the data down to the right layer. * new cache type `FederationStateListMeshGatewaysName` for use in `proxycfg/xds` layers * the function signature for RPC dialing picked up a new required field (the node name of the destination) * several new RPCs for manipulating a FederationState object: `FederationState:{Apply,Get,List,ListMeshGateways}` * 3 read-only internal APIs for debugging use to invoke those RPCs from curl * raft and fsm changes to persist these FederationStates * replication for FederationStates as they are canonically stored in the Primary and replicated to the Secondaries. * a special derivative of anti-entropy that runs in secondaries to snapshot their local mesh gateway `CheckServiceNodes` and sync them into their upstream FederationState in the primary (this works in conjunction with the replication to distribute addresses for all mesh gateways in all DCs to all other DCs) * a "gateway locator" convenience object to make use of this data to choose the addresses of gateways to use for any given RPC or gossip operation to a remote DC. This gets data from the "retry join" logic in the agent and also directly calls into the FSM. * RPC (`:8300`) on the server sniffs the first byte of a new connection to determine if it's actually doing native TLS. If so it checks the ALPN header for protocol determination (just like how the existing system uses the type-byte marker). * 2 new kinds of protocols are exclusively decoded via this native TLS mechanism: one for ferrying "packet" operations (udp-like) from the gossip layer and one for "stream" operations (tcp-like). The packet operations re-use sockets (using length-prefixing) to cut down on TLS re-negotiation overhead. * the server instances specially wrap the `memberlist.NetTransport` when running with gateway federation enabled (in a `wanfed.Transport`). The general gist is that if it tries to dial a node in the SAME datacenter (deduced by looking at the suffix of the node name) there is no change. If dialing a DIFFERENT datacenter it is wrapped up in a TLS+ALPN blob and sent through some mesh gateways to eventually end up in a server's :8300 port. * a new flag when launching a mesh gateway via `consul connect envoy` to indicate that the servers are to be exposed. This sets a special service meta when registering the gateway into the catalog. * `proxycfg/xds` notice this metadata blob to activate additional watches for the FederationState objects as well as the location of all of the consul servers in that datacenter. * `xds:` if the extra metadata is in place additional clusters are defined in a DC to bulk sink all traffic to another DC's gateways. For the current datacenter we listen on a wildcard name (`server.<dc>.consul`) that load balances all servers as well as one mini-cluster per node (`<node>.server.<dc>.consul`) * the `consul tls cert create` command got a new flag (`-node`) to help create an additional SAN in certs that can be used with this flavor of federation.
5 years ago
-----END PRIVATE KEY-----