aria2/src/SocketCore.cc

1723 lines
46 KiB
C++

/* <!-- copyright */
/*
* aria2 - The high speed download utility
*
* Copyright (C) 2006 Tatsuhiro Tsujikawa
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
/* copyright --> */
#include "SocketCore.h"
#ifdef HAVE_IPHLPAPI_H
# include <iphlpapi.h>
#endif // HAVE_IPHLPAPI_H
#include <unistd.h>
#ifdef HAVE_IFADDRS_H
# include <ifaddrs.h>
#endif // HAVE_IFADDRS_H
#include <cerrno>
#include <cstring>
#include <cassert>
#include <sstream>
#include <array>
#include "message.h"
#include "DlRetryEx.h"
#include "DlAbortEx.h"
#include "fmt.h"
#include "util.h"
#include "TimeA2.h"
#include "a2functional.h"
#include "LogFactory.h"
#include "A2STR.h"
#ifdef ENABLE_SSL
# include "TLSContext.h"
# include "TLSSession.h"
#endif // ENABLE_SSL
#ifdef HAVE_LIBSSH2
# include "SSHSession.h"
#endif // HAVE_LIBSSH2
namespace aria2 {
#ifndef __MINGW32__
# define SOCKET_ERRNO (errno)
#else
# define SOCKET_ERRNO (WSAGetLastError())
#endif // __MINGW32__
#ifdef __MINGW32__
# define A2_EINPROGRESS WSAEWOULDBLOCK
# define A2_EWOULDBLOCK WSAEWOULDBLOCK
# define A2_EINTR WSAEINTR
# define A2_WOULDBLOCK(e) (e == WSAEWOULDBLOCK)
#else // !__MINGW32__
# define A2_EINPROGRESS EINPROGRESS
# ifndef EWOULDBLOCK
# define EWOULDBLOCK EAGAIN
# endif // EWOULDBLOCK
# define A2_EWOULDBLOCK EWOULDBLOCK
# define A2_EINTR EINTR
# if EWOULDBLOCK == EAGAIN
# define A2_WOULDBLOCK(e) (e == EWOULDBLOCK)
# else // EWOULDBLOCK != EAGAIN
# define A2_WOULDBLOCK(e) (e == EWOULDBLOCK || e == EAGAIN)
# endif // EWOULDBLOCK != EAGAIN
#endif // !__MINGW32__
#ifdef __MINGW32__
# define CLOSE(X) ::closesocket(X)
#else
# define CLOSE(X) close(X)
#endif // __MINGW32__
namespace {
std::string errorMsg(int errNum)
{
#ifndef __MINGW32__
return util::safeStrerror(errNum);
#else
auto msg = util::formatLastError(errNum);
if (msg.empty()) {
char buf[256];
snprintf(buf, sizeof(buf), EX_SOCKET_UNKNOWN_ERROR, errNum, errNum);
return buf;
}
return msg;
#endif // __MINGW32__
}
} // namespace
namespace {
enum TlsState {
// TLS object is not initialized.
A2_TLS_NONE = 0,
// TLS object is now handshaking.
A2_TLS_HANDSHAKING = 2,
// TLS object is now connected.
A2_TLS_CONNECTED = 3
};
} // namespace
int SocketCore::protocolFamily_ = AF_UNSPEC;
int SocketCore::ipDscp_ = 0;
std::vector<SockAddr> SocketCore::bindAddrs_;
std::vector<std::vector<SockAddr>> SocketCore::bindAddrsList_;
std::vector<std::vector<SockAddr>>::iterator SocketCore::bindAddrsListIt_;
int SocketCore::socketRecvBufferSize_ = 0;
#ifdef ENABLE_SSL
std::shared_ptr<TLSContext> SocketCore::clTlsContext_;
std::shared_ptr<TLSContext> SocketCore::svTlsContext_;
void SocketCore::setClientTLSContext(
const std::shared_ptr<TLSContext>& tlsContext)
{
clTlsContext_ = tlsContext;
}
void SocketCore::setServerTLSContext(
const std::shared_ptr<TLSContext>& tlsContext)
{
svTlsContext_ = tlsContext;
}
#endif // ENABLE_SSL
SocketCore::SocketCore(int sockType) : sockType_(sockType), sockfd_(-1)
{
init();
}
SocketCore::SocketCore(sock_t sockfd, int sockType)
: sockType_(sockType), sockfd_(sockfd)
{
init();
}
void SocketCore::init()
{
blocking_ = true;
secure_ = A2_TLS_NONE;
wantRead_ = false;
wantWrite_ = false;
}
SocketCore::~SocketCore() { closeConnection(); }
namespace {
void applySocketBufferSize(sock_t fd)
{
auto recvBufSize = SocketCore::getSocketRecvBufferSize();
if (recvBufSize == 0) {
return;
}
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (a2_sockopt_t)&recvBufSize,
sizeof(recvBufSize)) < 0) {
auto errNum = SOCKET_ERRNO;
A2_LOG_WARN(fmt("Failed to set socket buffer size. Cause: %s",
errorMsg(errNum).c_str()));
}
}
} // namespace
void SocketCore::create(int family, int protocol)
{
int errNum;
closeConnection();
sock_t fd = socket(family, sockType_, protocol);
errNum = SOCKET_ERRNO;
if (fd == (sock_t)-1) {
throw DL_ABORT_EX(
fmt("Failed to create socket. Cause:%s", errorMsg(errNum).c_str()));
}
util::make_fd_cloexec(fd);
int sockopt = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t)&sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
CLOSE(fd);
throw DL_ABORT_EX(
fmt("Failed to create socket. Cause:%s", errorMsg(errNum).c_str()));
}
applySocketBufferSize(fd);
sockfd_ = fd;
}
static sock_t bindInternal(int family, int socktype, int protocol,
const struct sockaddr* addr, socklen_t addrlen,
std::string& error)
{
int errNum;
sock_t fd = socket(family, socktype, protocol);
errNum = SOCKET_ERRNO;
if (fd == (sock_t)-1) {
error = errorMsg(errNum);
return -1;
}
util::make_fd_cloexec(fd);
int sockopt = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t)&sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
return -1;
}
#ifdef IPV6_V6ONLY
if (family == AF_INET6) {
int sockopt = 1;
if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (a2_sockopt_t)&sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
return -1;
}
}
#endif // IPV6_V6ONLY
applySocketBufferSize(fd);
if (::bind(fd, addr, addrlen) == -1) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
return -1;
}
return fd;
}
static sock_t bindTo(const char* host, uint16_t port, int family, int sockType,
int getaddrinfoFlags, std::string& error)
{
struct addrinfo* res;
int s = callGetaddrinfo(&res, host, util::uitos(port).c_str(), family,
sockType, getaddrinfoFlags, 0);
if (s) {
error = gai_strerror(s);
return -1;
}
std::unique_ptr<addrinfo, decltype(&freeaddrinfo)> resDeleter(res,
freeaddrinfo);
struct addrinfo* rp;
for (rp = res; rp; rp = rp->ai_next) {
sock_t fd = bindInternal(rp->ai_family, rp->ai_socktype, rp->ai_protocol,
rp->ai_addr, rp->ai_addrlen, error);
if (fd != (sock_t)-1) {
return fd;
}
}
return -1;
}
void SocketCore::bindWithFamily(uint16_t port, int family, int flags)
{
closeConnection();
std::string error;
sock_t fd = bindTo(nullptr, port, family, sockType_, flags, error);
if (fd == (sock_t)-1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
}
sockfd_ = fd;
}
void SocketCore::bind(const char* addr, uint16_t port, int family, int flags)
{
closeConnection();
std::string error;
const char* addrp;
if (addr && addr[0]) {
addrp = addr;
}
else {
addrp = nullptr;
}
if (addrp || !(flags & AI_PASSIVE) || bindAddrsList_.empty()) {
sock_t fd = bindTo(addrp, port, family, sockType_, flags, error);
if (fd == (sock_t)-1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
}
sockfd_ = fd;
return;
}
std::array<char, NI_MAXHOST> host;
for (const auto& bindAddrs : bindAddrsList_) {
for (const auto& a : bindAddrs) {
if (family != AF_UNSPEC && family != a.su.storage.ss_family) {
continue;
}
auto s = getnameinfo(&a.su.sa, a.suLength, host.data(), NI_MAXHOST,
nullptr, 0, NI_NUMERICHOST);
if (s) {
error = gai_strerror(s);
continue;
}
if (addrp && strcmp(host.data(), addrp) != 0) {
error = "Given address and resolved address do not match.";
continue;
}
auto fd = bindTo(host.data(), port, family, sockType_, flags, error);
if (fd != (sock_t)-1) {
sockfd_ = fd;
return;
}
}
}
if (sockfd_ == (sock_t)-1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
}
}
void SocketCore::bind(uint16_t port, int flags)
{
bind(nullptr, port, protocolFamily_, flags);
}
void SocketCore::bind(const struct sockaddr* addr, socklen_t addrlen)
{
closeConnection();
std::string error;
sock_t fd = bindInternal(addr->sa_family, sockType_, 0, addr, addrlen, error);
if (fd == (sock_t)-1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_BIND, error.c_str()));
}
sockfd_ = fd;
}
void SocketCore::beginListen()
{
if (listen(sockfd_, 1024) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_LISTEN, errorMsg(errNum).c_str()));
}
setNonBlockingMode();
}
std::shared_ptr<SocketCore> SocketCore::acceptConnection() const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
sock_t fd;
while ((fd = accept(sockfd_, &sockaddr.sa, &len)) == (sock_t)-1 &&
SOCKET_ERRNO == A2_EINTR)
;
int errNum = SOCKET_ERRNO;
if (fd == (sock_t)-1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_ACCEPT, errorMsg(errNum).c_str()));
}
applySocketBufferSize(fd);
auto sock = std::make_shared<SocketCore>(fd, sockType_);
sock->setNonBlockingMode();
return sock;
}
Endpoint SocketCore::getAddrInfo() const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
getAddrInfo(sockaddr, len);
return util::getNumericNameInfo(&sockaddr.sa, len);
}
void SocketCore::getAddrInfo(sockaddr_union& sockaddr, socklen_t& len) const
{
if (getsockname(sockfd_, &sockaddr.sa, &len) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_GET_NAME, errorMsg(errNum).c_str()));
}
}
int SocketCore::getAddressFamily() const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
getAddrInfo(sockaddr, len);
return sockaddr.storage.ss_family;
}
Endpoint SocketCore::getPeerInfo() const
{
sockaddr_union sockaddr;
socklen_t len = sizeof(sockaddr);
if (getpeername(sockfd_, &sockaddr.sa, &len) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_GET_NAME, errorMsg(errNum).c_str()));
}
return util::getNumericNameInfo(&sockaddr.sa, len);
}
void SocketCore::establishConnection(const std::string& host, uint16_t port,
bool tcpNodelay)
{
closeConnection();
std::string error;
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, host.c_str(), util::uitos(port).c_str(),
protocolFamily_, sockType_, 0, 0);
if (s) {
throw DL_ABORT_EX(fmt(EX_RESOLVE_HOSTNAME, host.c_str(), gai_strerror(s)));
}
std::unique_ptr<addrinfo, decltype(&freeaddrinfo)> resDeleter(res,
freeaddrinfo);
struct addrinfo* rp;
int errNum;
for (rp = res; rp; rp = rp->ai_next) {
sock_t fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
errNum = SOCKET_ERRNO;
if (fd == (sock_t)-1) {
error = errorMsg(errNum);
continue;
}
util::make_fd_cloexec(fd);
int sockopt = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t)&sockopt,
sizeof(sockopt)) < 0) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(fd);
continue;
}
applySocketBufferSize(fd);
if (!bindAddrs_.empty()) {
bool bindSuccess = false;
for (const auto& soaddr : bindAddrs_) {
if (::bind(fd, &soaddr.su.sa, soaddr.suLength) == -1) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
A2_LOG_DEBUG(fmt(EX_SOCKET_BIND, error.c_str()));
}
else {
bindSuccess = true;
break;
}
}
if (!bindSuccess) {
CLOSE(fd);
continue;
}
}
if (!bindAddrsList_.empty()) {
++bindAddrsListIt_;
if (bindAddrsListIt_ == bindAddrsList_.end()) {
bindAddrsListIt_ = bindAddrsList_.begin();
}
bindAddrs_ = *bindAddrsListIt_;
}
sockfd_ = fd;
// make socket non-blocking mode
setNonBlockingMode();
if (tcpNodelay) {
setTcpNodelay(true);
}
if (connect(fd, rp->ai_addr, rp->ai_addrlen) == -1 &&
SOCKET_ERRNO != A2_EINPROGRESS) {
errNum = SOCKET_ERRNO;
error = errorMsg(errNum);
CLOSE(sockfd_);
sockfd_ = (sock_t)-1;
continue;
}
// TODO at this point, connection may not be established and it may fail
// later. In such case, next ai_addr should be tried.
break;
}
if (sockfd_ == (sock_t)-1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_CONNECT, host.c_str(), error.c_str()));
}
}
void SocketCore::setSockOpt(int level, int optname, void* optval,
socklen_t optlen)
{
if (setsockopt(sockfd_, level, optname, (a2_sockopt_t)optval, optlen) < 0) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_SET_OPT, errorMsg(errNum).c_str()));
}
}
void SocketCore::setMulticastInterface(const std::string& localAddr)
{
in_addr addr;
if (localAddr.empty()) {
addr.s_addr = htonl(INADDR_ANY);
}
else if (inetPton(AF_INET, localAddr.c_str(), &addr) != 0) {
throw DL_ABORT_EX(
fmt("%s is not valid IPv4 numeric address", localAddr.c_str()));
}
setSockOpt(IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr));
}
void SocketCore::setMulticastTtl(unsigned char ttl)
{
setSockOpt(IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));
}
void SocketCore::setMulticastLoop(unsigned char loop)
{
setSockOpt(IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop));
}
void SocketCore::joinMulticastGroup(const std::string& multicastAddr,
uint16_t multicastPort,
const std::string& localAddr)
{
in_addr multiAddr;
if (inetPton(AF_INET, multicastAddr.c_str(), &multiAddr) != 0) {
throw DL_ABORT_EX(
fmt("%s is not valid IPv4 numeric address", multicastAddr.c_str()));
}
in_addr ifAddr;
if (localAddr.empty()) {
ifAddr.s_addr = htonl(INADDR_ANY);
}
else if (inetPton(AF_INET, localAddr.c_str(), &ifAddr) != 0) {
throw DL_ABORT_EX(
fmt("%s is not valid IPv4 numeric address", localAddr.c_str()));
}
struct ip_mreq mreq;
memset(&mreq, 0, sizeof(mreq));
mreq.imr_multiaddr = multiAddr;
mreq.imr_interface = ifAddr;
setSockOpt(IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
}
void SocketCore::setTcpNodelay(bool f)
{
int val = f;
setSockOpt(IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val));
}
void SocketCore::applyIpDscp()
{
if (ipDscp_ == 0) {
return;
}
try {
int family = getAddressFamily();
if (family == AF_INET) {
setSockOpt(IPPROTO_IP, IP_TOS, &ipDscp_, sizeof(ipDscp_));
}
#if defined(IPV6_TCLASS) || defined(__linux__) || defined(__FreeBSD__) || \
defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
else if (family == AF_INET6) {
setSockOpt(IPPROTO_IPV6, IPV6_TCLASS, &ipDscp_, sizeof(ipDscp_));
}
#endif
}
catch (RecoverableException& e) {
A2_LOG_INFO_EX("Applying DSCP value failed", e);
}
}
void SocketCore::setNonBlockingMode()
{
#ifdef __MINGW32__
static u_long flag = 1;
if (::ioctlsocket(sockfd_, FIONBIO, &flag) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_NONBLOCKING, errorMsg(errNum).c_str()));
}
#else
int flags;
while ((flags = fcntl(sockfd_, F_GETFL, 0)) == -1 && errno == EINTR)
;
// TODO add error handling
while (fcntl(sockfd_, F_SETFL, flags | O_NONBLOCK) == -1 && errno == EINTR)
;
#endif // __MINGW32__
blocking_ = false;
}
void SocketCore::setBlockingMode()
{
#ifdef __MINGW32__
static u_long flag = 0;
if (::ioctlsocket(sockfd_, FIONBIO, &flag) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(fmt(EX_SOCKET_BLOCKING, errorMsg(errNum).c_str()));
}
#else
int flags;
while ((flags = fcntl(sockfd_, F_GETFL, 0)) == -1 && errno == EINTR)
;
// TODO add error handling
while (fcntl(sockfd_, F_SETFL, flags & (~O_NONBLOCK)) == -1 && errno == EINTR)
;
#endif // __MINGW32__
blocking_ = true;
}
void SocketCore::closeConnection()
{
#ifdef ENABLE_SSL
if (tlsSession_) {
tlsSession_->closeConnection();
tlsSession_.reset();
}
#endif // ENABLE_SSL
#ifdef HAVE_LIBSSH2
if (sshSession_) {
sshSession_->closeConnection();
sshSession_.reset();
}
#endif // HAVE_LIBSSH2
if (sockfd_ != (sock_t)-1) {
shutdown(sockfd_, SHUT_WR);
CLOSE(sockfd_);
sockfd_ = -1;
}
}
#ifndef __MINGW32__
# define CHECK_FD(fd) \
if (fd < 0 || FD_SETSIZE <= fd) { \
logger_->warn("Detected file descriptor >= FD_SETSIZE or < 0. " \
"Download may slow down or fail."); \
return false; \
}
#endif // !__MINGW32__
bool SocketCore::isWritable(time_t timeout)
{
#ifdef HAVE_POLL
struct pollfd p;
p.fd = sockfd_;
p.events = POLLOUT;
int r;
while ((r = poll(&p, 1, timeout * 1000)) == -1 && errno == EINTR)
;
int errNum = SOCKET_ERRNO;
if (r > 0) {
return p.revents & (POLLOUT | POLLHUP | POLLERR);
}
if (r == 0) {
return false;
}
throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_WRITABLE, errorMsg(errNum).c_str()));
#else // !HAVE_POLL
# ifndef __MINGW32__
CHECK_FD(sockfd_);
# endif // !__MINGW32__
fd_set fds;
FD_ZERO(&fds);
FD_SET(sockfd_, &fds);
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
int r = select(sockfd_ + 1, nullptr, &fds, nullptr, &tv);
int errNum = SOCKET_ERRNO;
if (r == 1) {
return true;
}
if (r == 0) {
// time out
return false;
}
if (errNum == A2_EINPROGRESS || errNum == A2_EINTR) {
return false;
}
throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_WRITABLE, errorMsg(errNum).c_str()));
#endif // !HAVE_POLL
}
bool SocketCore::isReadable(time_t timeout)
{
#ifdef HAVE_POLL
struct pollfd p;
p.fd = sockfd_;
p.events = POLLIN;
int r;
while ((r = poll(&p, 1, timeout * 1000)) == -1 && errno == EINTR)
;
int errNum = SOCKET_ERRNO;
if (r > 0) {
return p.revents & (POLLIN | POLLHUP | POLLERR);
}
if (r == 0) {
return false;
}
throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_READABLE, errorMsg(errNum).c_str()));
#else // !HAVE_POLL
# ifndef __MINGW32__
CHECK_FD(sockfd_);
# endif // !__MINGW32__
fd_set fds;
FD_ZERO(&fds);
FD_SET(sockfd_, &fds);
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
int r = select(sockfd_ + 1, &fds, nullptr, nullptr, &tv);
int errNum = SOCKET_ERRNO;
if (r == 1) {
return true;
}
if (r == 0) {
// time out
return false;
}
if (errNum == A2_EINPROGRESS || errNum == A2_EINTR) {
return false;
}
throw DL_RETRY_EX(fmt(EX_SOCKET_CHECK_READABLE, errorMsg(errNum).c_str()));
#endif // !HAVE_POLL
}
ssize_t SocketCore::writeVector(a2iovec* iov, size_t iovcnt)
{
ssize_t ret = 0;
wantRead_ = false;
wantWrite_ = false;
if (!secure_) {
#ifdef __MINGW32__
DWORD nsent;
int rv = WSASend(sockfd_, iov, iovcnt, &nsent, 0, 0, 0);
if (rv == 0) {
ret = nsent;
}
else {
ret = -1;
}
#else // !__MINGW32__
while ((ret = writev(sockfd_, iov, iovcnt)) == -1 &&
SOCKET_ERRNO == A2_EINTR)
;
#endif // !__MINGW32__
int errNum = SOCKET_ERRNO;
if (ret == -1) {
if (!A2_WOULDBLOCK(errNum)) {
throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str()));
}
wantWrite_ = true;
ret = 0;
}
}
else {
// For SSL/TLS, we could not use writev, so just iterate vector
// and write the data in normal way.
for (size_t i = 0; i < iovcnt; ++i) {
ssize_t rv = writeData(iov[i].A2IOVEC_BASE, iov[i].A2IOVEC_LEN);
if (rv == 0) {
break;
}
ret += rv;
}
}
return ret;
}
ssize_t SocketCore::writeData(const void* data, size_t len)
{
ssize_t ret = 0;
wantRead_ = false;
wantWrite_ = false;
if (!secure_) {
// Cast for Windows send()
while ((ret = send(sockfd_, reinterpret_cast<const char*>(data), len, 0)) ==
-1 &&
SOCKET_ERRNO == A2_EINTR)
;
int errNum = SOCKET_ERRNO;
if (ret == -1) {
if (!A2_WOULDBLOCK(errNum)) {
throw DL_RETRY_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str()));
}
wantWrite_ = true;
ret = 0;
}
}
else {
#ifdef ENABLE_SSL
ret = tlsSession_->writeData(data, len);
if (ret < 0) {
if (ret != TLS_ERR_WOULDBLOCK) {
throw DL_RETRY_EX(
fmt(EX_SOCKET_SEND, tlsSession_->getLastErrorString().c_str()));
}
if (tlsSession_->checkDirection() == TLS_WANT_READ) {
wantRead_ = true;
}
else {
wantWrite_ = true;
}
ret = 0;
}
#endif // ENABLE_SSL
}
return ret;
}
void SocketCore::readData(void* data, size_t& len)
{
ssize_t ret = 0;
wantRead_ = false;
wantWrite_ = false;
#ifdef HAVE_LIBSSH2
if (sshSession_) {
ret = sshSession_->readData(data, len);
if (ret < 0) {
if (ret != SSH_ERR_WOULDBLOCK) {
throw DL_RETRY_EX(
fmt(EX_SOCKET_RECV, sshSession_->getLastErrorString().c_str()));
}
if (sshSession_->checkDirection() == SSH_WANT_READ) {
wantRead_ = true;
}
else {
wantWrite_ = true;
}
ret = 0;
}
}
else
#endif // HAVE_LIBSSH2
if (!secure_) {
// Cast for Windows recv()
while ((ret = recv(sockfd_, reinterpret_cast<char*>(data), len, 0)) == -1 &&
SOCKET_ERRNO == A2_EINTR)
;
int errNum = SOCKET_ERRNO;
if (ret == -1) {
if (!A2_WOULDBLOCK(errNum)) {
throw DL_RETRY_EX(fmt(EX_SOCKET_RECV, errorMsg(errNum).c_str()));
}
wantRead_ = true;
ret = 0;
}
}
else {
#ifdef ENABLE_SSL
ret = tlsSession_->readData(data, len);
if (ret < 0) {
if (ret != TLS_ERR_WOULDBLOCK) {
throw DL_RETRY_EX(
fmt(EX_SOCKET_RECV, tlsSession_->getLastErrorString().c_str()));
}
if (tlsSession_->checkDirection() == TLS_WANT_READ) {
wantRead_ = true;
}
else {
wantWrite_ = true;
}
ret = 0;
}
#endif // ENABLE_SSL
}
len = ret;
}
#ifdef ENABLE_SSL
bool SocketCore::tlsAccept()
{
return tlsHandshake(svTlsContext_.get(), A2STR::NIL);
}
bool SocketCore::tlsConnect(const std::string& hostname)
{
return tlsHandshake(clTlsContext_.get(), hostname);
}
bool SocketCore::tlsHandshake(TLSContext* tlsctx, const std::string& hostname)
{
wantRead_ = false;
wantWrite_ = false;
if (secure_ == A2_TLS_CONNECTED) {
// Already connected!
return true;
}
if (secure_ == A2_TLS_NONE) {
// Do some initial setup
A2_LOG_DEBUG("Creating TLS session");
tlsSession_.reset(TLSSession::make(tlsctx));
auto rv = tlsSession_->init(sockfd_);
if (rv != TLS_ERR_OK) {
std::string error = tlsSession_->getLastErrorString();
tlsSession_.reset();
throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE, error.c_str()));
}
// Check hostname is not numeric and it includes ".". Setting
// "localhost" will produce TLS alert with GNUTLS.
if (tlsctx->getSide() == TLS_CLIENT && !util::isNumericHost(hostname) &&
hostname.find(".") != std::string::npos) {
rv = tlsSession_->setSNIHostname(hostname);
if (rv != TLS_ERR_OK) {
throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE,
tlsSession_->getLastErrorString().c_str()));
}
}
// Done with the setup, now let handshaking begin immediately.
secure_ = A2_TLS_HANDSHAKING;
A2_LOG_DEBUG("TLS Handshaking");
}
if (secure_ == A2_TLS_HANDSHAKING) {
// Starting handshake after initial setup or still handshaking.
TLSVersion ver = TLS_PROTO_NONE;
int rv = 0;
std::string handshakeError;
if (tlsctx->getSide() == TLS_CLIENT) {
rv = tlsSession_->tlsConnect(hostname, ver, handshakeError);
}
else {
rv = tlsSession_->tlsAccept(ver);
}
if (rv == TLS_ERR_OK) {
// We're good, more or less.
// 1. Construct peerinfo
std::stringstream ss;
if (!hostname.empty()) {
ss << hostname << " (";
}
auto peerEndpoint = getPeerInfo();
ss << peerEndpoint.addr << ":" << peerEndpoint.port;
if (!hostname.empty()) {
ss << ")";
}
auto peerInfo = ss.str();
// 2. Issue any warnings
switch (ver) {
case TLS_PROTO_NONE:
A2_LOG_WARN(fmt(MSG_WARN_UNKNOWN_TLS_CONNECTION, peerInfo.c_str()));
break;
case TLS_PROTO_SSL3:
A2_LOG_WARN(
fmt(MSG_WARN_OLD_TLS_CONNECTION, "SSLv3", peerInfo.c_str()));
break;
default:
A2_LOG_DEBUG(fmt("Securely connected to %s", peerInfo.c_str()));
break;
}
// 3. We're connected now!
secure_ = A2_TLS_CONNECTED;
return true;
}
if (rv == TLS_ERR_WOULDBLOCK) {
// We're not done yet...
if (tlsSession_->checkDirection() == TLS_WANT_READ) {
// ... but read buffers are empty.
wantRead_ = true;
}
else {
// ... but write buffers are full.
wantWrite_ = true;
}
// Returning false (instead of true==success or throwing) will cause this
// function to be called again once buffering is dealt with
return false;
}
if (rv == TLS_ERR_ERROR) {
// Damn those error.
throw DL_ABORT_EX(fmt("SSL/TLS handshake failure: %s",
handshakeError.empty()
? tlsSession_->getLastErrorString().c_str()
: handshakeError.c_str()));
}
// Some implementation passed back an invalid result.
throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE,
"Invalid connect state (this is a bug in the TLS "
"backend!)"));
}
// We should never get here, i.e. all possible states should have been handled
// and returned from a branch before! Getting here is a bug, of course!
throw DL_ABORT_EX(fmt(EX_SSL_INIT_FAILURE, "Invalid state (this is a bug!)"));
}
#endif // ENABLE_SSL
#ifdef HAVE_LIBSSH2
bool SocketCore::sshHandshake(const std::string& hashType,
const std::string& digest)
{
wantRead_ = false;
wantWrite_ = false;
if (!sshSession_) {
sshSession_ = make_unique<SSHSession>();
if (sshSession_->init(sockfd_) == SSH_ERR_ERROR) {
throw DL_ABORT_EX("Could not create SSH session");
}
}
auto rv = sshSession_->handshake();
if (rv == SSH_ERR_WOULDBLOCK) {
sshCheckDirection();
return false;
}
if (rv == SSH_ERR_ERROR) {
throw DL_ABORT_EX(fmt("SSH handshake failure: %s",
sshSession_->getLastErrorString().c_str()));
}
if (!hashType.empty()) {
auto actualDigest = sshSession_->hostkeyMessageDigest(hashType);
if (actualDigest.empty()) {
throw DL_ABORT_EX(fmt("Empty host key fingerprint from SSH layer: "
"perhaps hash type %s is not supported?",
hashType.c_str()));
}
if (digest != actualDigest) {
throw DL_ABORT_EX(fmt("Unexpected SSH host key: expected %s, actual %s",
util::toHex(digest).c_str(),
util::toHex(actualDigest).c_str()));
}
}
return true;
}
bool SocketCore::sshAuthPassword(const std::string& user,
const std::string& password)
{
assert(sshSession_);
wantRead_ = false;
wantWrite_ = false;
auto rv = sshSession_->authPassword(user, password);
if (rv == SSH_ERR_WOULDBLOCK) {
sshCheckDirection();
return false;
}
if (rv == SSH_ERR_ERROR) {
throw DL_ABORT_EX(fmt("SSH authentication failure: %s",
sshSession_->getLastErrorString().c_str()));
}
return true;
}
bool SocketCore::sshSFTPOpen(const std::string& path)
{
assert(sshSession_);
wantRead_ = false;
wantWrite_ = false;
auto rv = sshSession_->sftpOpen(path);
if (rv == SSH_ERR_WOULDBLOCK) {
sshCheckDirection();
return false;
}
if (rv == SSH_ERR_ERROR) {
throw DL_ABORT_EX(fmt("SSH opening SFTP path %s failed: %s", path.c_str(),
sshSession_->getLastErrorString().c_str()));
}
return true;
}
bool SocketCore::sshSFTPClose()
{
assert(sshSession_);
wantRead_ = false;
wantWrite_ = false;
auto rv = sshSession_->sftpClose();
if (rv == SSH_ERR_WOULDBLOCK) {
sshCheckDirection();
return false;
}
if (rv == SSH_ERR_ERROR) {
throw DL_ABORT_EX(fmt("SSH closing SFTP failed: %s",
sshSession_->getLastErrorString().c_str()));
}
return true;
}
bool SocketCore::sshSFTPStat(int64_t& totalLength, time_t& mtime,
const std::string& path)
{
assert(sshSession_);
wantRead_ = false;
wantWrite_ = false;
auto rv = sshSession_->sftpStat(totalLength, mtime);
if (rv == SSH_ERR_WOULDBLOCK) {
sshCheckDirection();
return false;
}
if (rv == SSH_ERR_ERROR) {
throw DL_ABORT_EX(fmt("SSH stat SFTP path %s filed: %s", path.c_str(),
sshSession_->getLastErrorString().c_str()));
}
return true;
}
void SocketCore::sshSFTPSeek(int64_t pos)
{
assert(sshSession_);
sshSession_->sftpSeek(pos);
}
bool SocketCore::sshGracefulShutdown()
{
assert(sshSession_);
auto rv = sshSession_->gracefulShutdown();
if (rv == SSH_ERR_WOULDBLOCK) {
sshCheckDirection();
return false;
}
if (rv == SSH_ERR_ERROR) {
throw DL_ABORT_EX(fmt("SSH graceful shutdown failed: %s",
sshSession_->getLastErrorString().c_str()));
}
return true;
}
void SocketCore::sshCheckDirection()
{
if (sshSession_->checkDirection() == SSH_WANT_READ) {
wantRead_ = true;
}
else {
wantWrite_ = true;
}
}
#endif // HAVE_LIBSSH2
ssize_t SocketCore::writeData(const void* data, size_t len,
const std::string& host, uint16_t port)
{
wantRead_ = false;
wantWrite_ = false;
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, host.c_str(), util::uitos(port).c_str(),
protocolFamily_, sockType_, 0, 0);
if (s) {
throw DL_ABORT_EX(fmt(EX_SOCKET_SEND, gai_strerror(s)));
}
std::unique_ptr<addrinfo, decltype(&freeaddrinfo)> resDeleter(res,
freeaddrinfo);
struct addrinfo* rp;
ssize_t r = -1;
int errNum = 0;
for (rp = res; rp; rp = rp->ai_next) {
// Cast for Windows sendto()
while ((r = sendto(sockfd_, reinterpret_cast<const char*>(data), len, 0,
rp->ai_addr, rp->ai_addrlen)) == -1 &&
A2_EINTR == SOCKET_ERRNO)
;
errNum = SOCKET_ERRNO;
if (r == static_cast<ssize_t>(len)) {
break;
}
if (r == -1 && A2_WOULDBLOCK(errNum)) {
wantWrite_ = true;
r = 0;
break;
}
}
if (r == -1) {
throw DL_ABORT_EX(fmt(EX_SOCKET_SEND, errorMsg(errNum).c_str()));
}
return r;
}
ssize_t SocketCore::readDataFrom(void* data, size_t len, Endpoint& sender)
{
wantRead_ = false;
wantWrite_ = false;
sockaddr_union sockaddr;
socklen_t sockaddrlen = sizeof(sockaddr);
ssize_t r;
// Cast for Windows recvfrom()
while ((r = recvfrom(sockfd_, reinterpret_cast<char*>(data), len, 0,
&sockaddr.sa, &sockaddrlen)) == -1 &&
A2_EINTR == SOCKET_ERRNO)
;
int errNum = SOCKET_ERRNO;
if (r == -1) {
if (!A2_WOULDBLOCK(errNum)) {
throw DL_RETRY_EX(fmt(EX_SOCKET_RECV, errorMsg(errNum).c_str()));
}
wantRead_ = true;
r = 0;
}
else {
sender = util::getNumericNameInfo(&sockaddr.sa, sockaddrlen);
}
return r;
}
std::string SocketCore::getSocketError() const
{
int error;
socklen_t optlen = sizeof(error);
if (getsockopt(sockfd_, SOL_SOCKET, SO_ERROR, (a2_sockopt_t)&error,
&optlen) == -1) {
int errNum = SOCKET_ERRNO;
throw DL_ABORT_EX(
fmt("Failed to get socket error: %s", errorMsg(errNum).c_str()));
}
if (error != 0) {
return errorMsg(error);
}
return "";
}
bool SocketCore::wantRead() const { return wantRead_; }
bool SocketCore::wantWrite() const { return wantWrite_; }
void SocketCore::bindAddress(const std::string& iface)
{
auto bindAddrs = getInterfaceAddress(iface, protocolFamily_);
if (bindAddrs.empty()) {
throw DL_ABORT_EX(
fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), "not available"));
}
bindAddrs_.swap(bindAddrs);
for (const auto& a : bindAddrs_) {
char host[NI_MAXHOST];
int s;
s = getnameinfo(&a.su.sa, a.suLength, host, NI_MAXHOST, nullptr, 0,
NI_NUMERICHOST);
if (s == 0) {
A2_LOG_DEBUG(fmt("Sockets will bind to %s", host));
}
}
bindAddrsList_.push_back(bindAddrs_);
bindAddrsListIt_ = std::begin(bindAddrsList_);
}
void SocketCore::bindAllAddress(const std::string& ifaces)
{
std::vector<std::vector<SockAddr>> bindAddrsList;
std::vector<std::string> ifaceList;
util::split(ifaces.begin(), ifaces.end(), std::back_inserter(ifaceList), ',',
true);
if (ifaceList.empty()) {
throw DL_ABORT_EX(
"List of interfaces is empty, one or more interfaces is required");
}
for (auto& iface : ifaceList) {
auto bindAddrs = getInterfaceAddress(iface, protocolFamily_);
if (bindAddrs.empty()) {
throw DL_ABORT_EX(
fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), "not available"));
}
bindAddrsList.push_back(bindAddrs);
for (const auto& a : bindAddrs) {
char host[NI_MAXHOST];
int s;
s = getnameinfo(&a.su.sa, a.suLength, host, NI_MAXHOST, nullptr, 0,
NI_NUMERICHOST);
if (s == 0) {
A2_LOG_DEBUG(fmt("Sockets will bind to %s", host));
}
}
}
bindAddrsList_.swap(bindAddrsList);
bindAddrsListIt_ = bindAddrsList_.begin();
bindAddrs_ = *bindAddrsListIt_;
}
void SocketCore::setSocketRecvBufferSize(int size)
{
socketRecvBufferSize_ = size;
}
int SocketCore::getSocketRecvBufferSize() { return socketRecvBufferSize_; }
size_t SocketCore::getRecvBufferedLength() const
{
#ifdef ENABLE_SSL
if (!tlsSession_) {
return 0;
}
return tlsSession_->getRecvBufferedLength();
#else // !ENABLE_SSL
return 0;
#endif // !ENABLE_SSL
}
std::vector<SockAddr> SocketCore::getInterfaceAddress(const std::string& iface,
int family, int aiFlags)
{
A2_LOG_DEBUG(fmt("Finding interface %s", iface.c_str()));
std::vector<SockAddr> ifAddrs;
#ifdef HAVE_GETIFADDRS
// First find interface in interface addresses
struct ifaddrs* ifaddr = nullptr;
if (getifaddrs(&ifaddr) == -1) {
int errNum = SOCKET_ERRNO;
A2_LOG_INFO(
fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), errorMsg(errNum).c_str()));
}
else {
std::unique_ptr<ifaddrs, decltype(&freeifaddrs)> ifaddrDeleter(ifaddr,
freeifaddrs);
for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) {
if (!ifa->ifa_addr) {
continue;
}
int iffamily = ifa->ifa_addr->sa_family;
if (family == AF_UNSPEC) {
if (iffamily != AF_INET && iffamily != AF_INET6) {
continue;
}
}
else if (family == AF_INET) {
if (iffamily != AF_INET) {
continue;
}
}
else if (family == AF_INET6) {
if (iffamily != AF_INET6) {
continue;
}
}
else {
continue;
}
if (strcmp(iface.c_str(), ifa->ifa_name) == 0) {
SockAddr soaddr;
soaddr.suLength =
iffamily == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6);
memcpy(&soaddr.su, ifa->ifa_addr, soaddr.suLength);
ifAddrs.push_back(soaddr);
}
}
}
#endif // HAVE_GETIFADDRS
if (ifAddrs.empty()) {
addrinfo* res;
int s;
s = callGetaddrinfo(&res, iface.c_str(), nullptr, family, SOCK_STREAM,
aiFlags, 0);
if (s) {
A2_LOG_INFO(fmt(MSG_INTERFACE_NOT_FOUND, iface.c_str(), gai_strerror(s)));
}
else {
std::unique_ptr<addrinfo, decltype(&freeaddrinfo)> resDeleter(
res, freeaddrinfo);
addrinfo* rp;
for (rp = res; rp; rp = rp->ai_next) {
// Try to bind socket with this address. If it fails, the
// address is not for this machine.
try {
SocketCore socket;
socket.bind(rp->ai_addr, rp->ai_addrlen);
SockAddr soaddr;
memcpy(&soaddr.su, rp->ai_addr, rp->ai_addrlen);
soaddr.suLength = rp->ai_addrlen;
ifAddrs.push_back(soaddr);
}
catch (RecoverableException& e) {
continue;
}
}
}
}
return ifAddrs;
}
namespace {
int defaultAIFlags = DEFAULT_AI_FLAGS;
int getDefaultAIFlags() { return defaultAIFlags; }
} // namespace
void setDefaultAIFlags(int flags) { defaultAIFlags = flags; }
int callGetaddrinfo(struct addrinfo** resPtr, const char* host,
const char* service, int family, int sockType, int flags,
int protocol)
{
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = sockType;
hints.ai_flags = getDefaultAIFlags();
hints.ai_flags |= flags;
hints.ai_protocol = protocol;
return getaddrinfo(host, service, &hints, resPtr);
}
int inetNtop(int af, const void* src, char* dst, socklen_t size)
{
sockaddr_union su;
memset(&su, 0, sizeof(su));
if (af == AF_INET) {
su.in.sin_family = AF_INET;
#ifdef HAVE_SOCKADDR_IN_SIN_LEN
su.in.sin_len = sizeof(su.in);
#endif // HAVE_SOCKADDR_IN_SIN_LEN
memcpy(&su.in.sin_addr, src, sizeof(su.in.sin_addr));
return getnameinfo(&su.sa, sizeof(su.in), dst, size, nullptr, 0,
NI_NUMERICHOST);
}
if (af == AF_INET6) {
su.in6.sin6_family = AF_INET6;
#ifdef HAVE_SOCKADDR_IN6_SIN6_LEN
su.in6.sin6_len = sizeof(su.in6);
#endif // HAVE_SOCKADDR_IN6_SIN6_LEN
memcpy(&su.in6.sin6_addr, src, sizeof(su.in6.sin6_addr));
return getnameinfo(&su.sa, sizeof(su.in6), dst, size, nullptr, 0,
NI_NUMERICHOST);
}
return EAI_FAMILY;
}
int inetPton(int af, const char* src, void* dst)
{
union {
uint32_t ipv4_addr;
unsigned char ipv6_addr[16];
} binaddr;
size_t len = net::getBinAddr(binaddr.ipv6_addr, src);
if (af == AF_INET) {
if (len != 4) {
return -1;
}
in_addr* addr = reinterpret_cast<in_addr*>(dst);
addr->s_addr = binaddr.ipv4_addr;
return 0;
}
if (af == AF_INET6) {
if (len != 16) {
return -1;
}
in6_addr* addr = reinterpret_cast<in6_addr*>(dst);
memcpy(addr->s6_addr, binaddr.ipv6_addr, sizeof(addr->s6_addr));
return 0;
}
return -1;
}
namespace net {
size_t getBinAddr(void* dest, const std::string& ip)
{
size_t len = 0;
addrinfo* res;
if (callGetaddrinfo(&res, ip.c_str(), nullptr, AF_UNSPEC, 0, AI_NUMERICHOST,
0) != 0) {
return len;
}
std::unique_ptr<addrinfo, decltype(&freeaddrinfo)> resDeleter(res,
freeaddrinfo);
for (addrinfo* rp = res; rp; rp = rp->ai_next) {
sockaddr_union su;
memcpy(&su, rp->ai_addr, rp->ai_addrlen);
if (rp->ai_family == AF_INET) {
len = sizeof(in_addr);
memcpy(dest, &(su.in.sin_addr), len);
break;
}
else if (rp->ai_family == AF_INET6) {
len = sizeof(in6_addr);
memcpy(dest, &(su.in6.sin6_addr), len);
break;
}
}
return len;
}
bool verifyHostname(const std::string& hostname,
const std::vector<std::string>& dnsNames,
const std::vector<std::string>& ipAddrs,
const std::string& commonName)
{
if (util::isNumericHost(hostname)) {
if (ipAddrs.empty()) {
return commonName == hostname;
}
// We need max 16 bytes to store IPv6 address.
unsigned char binAddr[16];
size_t addrLen = getBinAddr(binAddr, hostname);
if (addrLen == 0) {
return false;
}
for (auto& ipAddr : ipAddrs) {
if (addrLen == ipAddr.size() &&
memcmp(binAddr, ipAddr.c_str(), addrLen) == 0) {
return true;
}
}
return false;
}
if (dnsNames.empty()) {
return util::tlsHostnameMatch(commonName, hostname);
}
for (auto& dnsName : dnsNames) {
if (util::tlsHostnameMatch(dnsName, hostname)) {
return true;
}
}
return false;
}
namespace {
bool ipv4AddrConfigured = true;
bool ipv6AddrConfigured = true;
} // namespace
#ifdef __MINGW32__
namespace {
const uint32_t APIPA_IPV4_BEGIN = 2851995649u; // 169.254.0.1
const uint32_t APIPA_IPV4_END = 2852061183u; // 169.254.255.255
} // namespace
#endif // __MINGW32__
void checkAddrconfig()
{
#ifdef HAVE_IPHLPAPI_H
A2_LOG_INFO("Checking configured addresses");
ULONG bufsize = 15_k;
ULONG retval = 0;
IP_ADAPTER_ADDRESSES* buf = 0;
int numTry = 0;
const int MAX_TRY = 3;
do {
buf = reinterpret_cast<IP_ADAPTER_ADDRESSES*>(malloc(bufsize));
retval = GetAdaptersAddresses(AF_UNSPEC, 0, 0, buf, &bufsize);
if (retval != ERROR_BUFFER_OVERFLOW) {
break;
}
free(buf);
buf = 0;
} while (retval == ERROR_BUFFER_OVERFLOW && numTry < MAX_TRY);
if (retval != NO_ERROR) {
A2_LOG_INFO("GetAdaptersAddresses failed. Assume both IPv4 and IPv6 "
" addresses are configured.");
return;
}
ipv4AddrConfigured = false;
ipv6AddrConfigured = false;
char host[NI_MAXHOST];
sockaddr_union ad;
int rv;
for (IP_ADAPTER_ADDRESSES* p = buf; p; p = p->Next) {
if (p->IfType == IF_TYPE_TUNNEL) {
// Skip tunnel interface because Windows7 automatically setup
// this for IPv6.
continue;
}
PIP_ADAPTER_UNICAST_ADDRESS ucaddr = p->FirstUnicastAddress;
if (!ucaddr) {
continue;
}
for (PIP_ADAPTER_UNICAST_ADDRESS i = ucaddr; i; i = i->Next) {
bool found = false;
switch (i->Address.iSockaddrLength) {
case sizeof(sockaddr_in): {
memcpy(&ad.storage, i->Address.lpSockaddr, i->Address.iSockaddrLength);
uint32_t haddr = ntohl(ad.in.sin_addr.s_addr);
if (haddr != INADDR_LOOPBACK &&
(haddr < APIPA_IPV4_BEGIN || APIPA_IPV4_END <= haddr)) {
ipv4AddrConfigured = true;
found = true;
}
break;
}
case sizeof(sockaddr_in6):
memcpy(&ad.storage, i->Address.lpSockaddr, i->Address.iSockaddrLength);
if (!IN6_IS_ADDR_LOOPBACK(&ad.in6.sin6_addr) &&
!IN6_IS_ADDR_LINKLOCAL(&ad.in6.sin6_addr)) {
ipv6AddrConfigured = true;
found = true;
}
break;
}
rv = getnameinfo(i->Address.lpSockaddr, i->Address.iSockaddrLength, host,
NI_MAXHOST, 0, 0, NI_NUMERICHOST);
if (rv == 0) {
if (found) {
A2_LOG_INFO(fmt("Found configured address: %s", host));
}
else {
A2_LOG_INFO(fmt("Not considered: %s", host));
}
}
}
}
free(buf);
A2_LOG_INFO(fmt("IPv4 configured=%d, IPv6 configured=%d", ipv4AddrConfigured,
ipv6AddrConfigured));
#elif defined(HAVE_GETIFADDRS)
A2_LOG_INFO("Checking configured addresses");
ipv4AddrConfigured = false;
ipv6AddrConfigured = false;
ifaddrs* ifaddr = nullptr;
int rv;
rv = getifaddrs(&ifaddr);
if (rv == -1) {
int errNum = SOCKET_ERRNO;
A2_LOG_INFO(fmt("getifaddrs failed. Cause: %s", errorMsg(errNum).c_str()));
return;
}
std::unique_ptr<ifaddrs, decltype(&freeifaddrs)> ifaddrDeleter(ifaddr,
freeifaddrs);
char host[NI_MAXHOST];
sockaddr_union ad;
for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) {
if (!ifa->ifa_addr) {
continue;
}
bool found = false;
size_t addrlen = 0;
switch (ifa->ifa_addr->sa_family) {
case AF_INET: {
addrlen = sizeof(sockaddr_in);
memcpy(&ad.storage, ifa->ifa_addr, addrlen);
if (ad.in.sin_addr.s_addr != htonl(INADDR_LOOPBACK)) {
ipv4AddrConfigured = true;
found = true;
}
break;
}
case AF_INET6: {
addrlen = sizeof(sockaddr_in6);
memcpy(&ad.storage, ifa->ifa_addr, addrlen);
if (!IN6_IS_ADDR_LOOPBACK(&ad.in6.sin6_addr) &&
!IN6_IS_ADDR_LINKLOCAL(&ad.in6.sin6_addr)) {
ipv6AddrConfigured = true;
found = true;
}
break;
}
default:
continue;
}
rv = getnameinfo(ifa->ifa_addr, addrlen, host, NI_MAXHOST, nullptr, 0,
NI_NUMERICHOST);
if (rv == 0) {
if (found) {
A2_LOG_INFO(fmt("Found configured address: %s", host));
}
else {
A2_LOG_INFO(fmt("Not considered: %s", host));
}
}
}
A2_LOG_INFO(fmt("IPv4 configured=%d, IPv6 configured=%d", ipv4AddrConfigured,
ipv6AddrConfigured));
#else // !HAVE_GETIFADDRS
A2_LOG_INFO("getifaddrs is not available. Assume IPv4 and IPv6 addresses"
" are configured.");
#endif // !HAVE_GETIFADDRS
}
bool getIPv4AddrConfigured() { return ipv4AddrConfigured; }
bool getIPv6AddrConfigured() { return ipv6AddrConfigured; }
} // namespace net
} // namespace aria2