aria2/src/MSEHandshake.cc

589 lines
17 KiB
C++

/* <!-- copyright */
/*
* aria2 - The high speed download utility
*
* Copyright (C) 2006 Tatsuhiro Tsujikawa
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
/* copyright --> */
#include "MSEHandshake.h"
#include <cstring>
#include <cassert>
#include "message.h"
#include "DlAbortEx.h"
#include "LogFactory.h"
#include "Logger.h"
#include "BtHandshakeMessage.h"
#include "SocketCore.h"
#include "a2netcompat.h"
#include "DHKeyExchange.h"
#include "ARC4Encryptor.h"
#include "MessageDigest.h"
#include "message_digest_helper.h"
#include "SimpleRandomizer.h"
#include "util.h"
#include "DownloadContext.h"
#include "prefs.h"
#include "Option.h"
#include "fmt.h"
#include "bittorrent_helper.h"
#include "array_fun.h"
namespace aria2 {
namespace {
const size_t MAX_PAD_LENGTH = 512;
const size_t CRYPTO_BITFIELD_LENGTH = 4;
const unsigned char VC[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
const unsigned char* PRIME = reinterpret_cast<const unsigned char*>("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A36210000000000090563");
const unsigned char* GENERATOR = reinterpret_cast<const unsigned char*>("2");
} // namespace
MSEHandshake::MSEHandshake
(cuid_t cuid,
const SharedHandle<SocketCore>& socket,
const Option* op)
: cuid_(cuid),
socket_(socket),
wantRead_(false),
option_(op),
rbufLength_(0),
socketBuffer_(socket),
negotiatedCryptoType_(CRYPTO_NONE),
dh_(0),
initiator_(true),
markerIndex_(0),
padLength_(0),
iaLength_(0),
ia_(0),
sha1_(MessageDigest::sha1())
{}
MSEHandshake::~MSEHandshake()
{
delete dh_;
delete [] ia_;
}
MSEHandshake::HANDSHAKE_TYPE MSEHandshake::identifyHandshakeType()
{
if(rbufLength_ < 20) {
wantRead_ = true;
return HANDSHAKE_NOT_YET;
}
if(rbuf_[0] == BtHandshakeMessage::PSTR_LENGTH &&
memcmp(BtHandshakeMessage::BT_PSTR, rbuf_+1, 19) == 0) {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - This is legacy BitTorrent handshake.",
cuid_));
return HANDSHAKE_LEGACY;
} else {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - This may be encrypted BitTorrent handshake.",
cuid_));
return HANDSHAKE_ENCRYPTED;
}
}
void MSEHandshake::initEncryptionFacility(bool initiator)
{
delete dh_;
dh_ = new DHKeyExchange();
dh_->init(PRIME, PRIME_BITS, GENERATOR, 160);
dh_->generatePublicKey();
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - DH initialized.", cuid_));
initiator_ = initiator;
}
void MSEHandshake::sendPublicKey()
{
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - Sending public key.",
cuid_));
unsigned char* buf = new unsigned char[KEY_LENGTH+MAX_PAD_LENGTH];
array_ptr<unsigned char> bufp(buf);
dh_->getPublicKey(buf, KEY_LENGTH);
size_t padLength =
SimpleRandomizer::getInstance()->getRandomNumber(MAX_PAD_LENGTH+1);
dh_->generateNonce(buf+KEY_LENGTH, padLength);
socketBuffer_.pushBytes(buf, KEY_LENGTH+padLength);
bufp.reset(0);
}
void MSEHandshake::read()
{
if(rbufLength_ >= MAX_BUFFER_LENGTH) {
assert(!wantRead_);
return;
}
size_t len = MAX_BUFFER_LENGTH-rbufLength_;
socket_->readData(rbuf_+rbufLength_, len);
if(len == 0 && !socket_->wantRead() && !socket_->wantWrite()) {
// TODO Should we set graceful in peer?
throw DL_ABORT_EX(EX_EOF_FROM_PEER);
}
rbufLength_ += len;
wantRead_ = false;
}
bool MSEHandshake::send()
{
socketBuffer_.send();
return socketBuffer_.sendBufferIsEmpty();
}
void MSEHandshake::shiftBuffer(size_t offset)
{
assert(rbufLength_ >= offset);
memmove(rbuf_, rbuf_+offset, rbufLength_-offset);
rbufLength_ -= offset;
}
bool MSEHandshake::receivePublicKey()
{
if(rbufLength_ < KEY_LENGTH) {
wantRead_ = true;
return false;
}
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - public key received.", cuid_));
// TODO handle exception. in catch, resbufLength = 0;
dh_->computeSecret(secret_, sizeof(secret_), rbuf_, KEY_LENGTH);
// shift buffer
shiftBuffer(KEY_LENGTH);
return true;
}
void MSEHandshake::initCipher(const unsigned char* infoHash)
{
memcpy(infoHash_, infoHash, INFO_HASH_LENGTH);
//Initialize cipher
unsigned char s[4+KEY_LENGTH+INFO_HASH_LENGTH];
memcpy(s, initiator_?"keyA":"keyB", 4);
memcpy(s+4, secret_, KEY_LENGTH);
memcpy(s+4+KEY_LENGTH, infoHash, INFO_HASH_LENGTH);
unsigned char localCipherKey[20];
sha1_->reset();
message_digest::digest(localCipherKey, sizeof(localCipherKey),
sha1_, s, sizeof(s));
encryptor_.reset(new ARC4Encryptor());
encryptor_->init(localCipherKey, sizeof(localCipherKey));
unsigned char peerCipherKey[20];
memcpy(s, initiator_?"keyB":"keyA", 4);
sha1_->reset();
message_digest::digest(peerCipherKey, sizeof(peerCipherKey),
sha1_, s, sizeof(s));
decryptor_.reset(new ARC4Encryptor());
decryptor_->init(peerCipherKey, sizeof(peerCipherKey));
// discard first 1024 bytes ARC4 output.
unsigned char garbage[1024];
encryptor_->encrypt(1024, garbage, garbage);
decryptor_->encrypt(1024, garbage, garbage);
if(initiator_) {
ARC4Encryptor enc;
enc.init(peerCipherKey, sizeof(peerCipherKey));
// discard first 1024 bytes ARC4 output.
enc.encrypt(1024, garbage, garbage);
enc.encrypt(VC_LENGTH, initiatorVCMarker_, VC);
}
}
// Given data is pushed to socketBuffer_ and data will be deleted by
// socketBuffer_.
void MSEHandshake::encryptAndSendData(unsigned char* data, size_t length)
{
encryptor_->encrypt(length, data, data);
socketBuffer_.pushBytes(data, length);
}
void MSEHandshake::createReq1Hash(unsigned char* md) const
{
unsigned char buffer[100];
memcpy(buffer, "req1", 4);
memcpy(buffer+4, secret_, KEY_LENGTH);
sha1_->reset();
message_digest::digest(md, 20, sha1_, buffer, 4+KEY_LENGTH);
}
void MSEHandshake::createReq23Hash(unsigned char* md, const unsigned char* infoHash) const
{
unsigned char x[24];
memcpy(x, "req2", 4);
memcpy(x+4, infoHash, INFO_HASH_LENGTH);
unsigned char xh[20];
sha1_->reset();
message_digest::digest(xh, sizeof(xh), sha1_, x, sizeof(x));
unsigned char y[4+96];
memcpy(y, "req3", 4);
memcpy(y+4, secret_, KEY_LENGTH);
unsigned char yh[20];
sha1_->reset();
message_digest::digest(yh, sizeof(yh), sha1_, y, sizeof(y));
for(size_t i = 0; i < 20; ++i) {
md[i] = xh[i]^yh[i];
}
}
uint16_t MSEHandshake::decodeLength16(const unsigned char* buffer)
{
uint16_t be;
decryptor_->encrypt(sizeof(be),
reinterpret_cast<unsigned char*>(&be),
buffer);
return ntohs(be);
}
void MSEHandshake::sendInitiatorStep2()
{
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - Sending negotiation step2.", cuid_));
// Assuming no exception
unsigned char* md = new unsigned char[20];
createReq1Hash(md);
socketBuffer_.pushBytes(md, 20);
// Assuming no exception
md = new unsigned char[20];
createReq23Hash(md, infoHash_);
socketBuffer_.pushBytes(md, 20);
// buffer is filled in this order:
// VC(VC_LENGTH bytes),
// crypto_provide(CRYPTO_BITFIELD_LENGTH bytes),
// len(padC)(2 bytes),
// padC(len(padC) bytes <= MAX_PAD_LENGTH),
// len(IA)(2 bytes)
unsigned char* buffer = new unsigned char
[40+VC_LENGTH+CRYPTO_BITFIELD_LENGTH+2+MAX_PAD_LENGTH+2];
array_ptr<unsigned char> bufp(buffer);
unsigned char* ptr = buffer;
// VC
memcpy(ptr, VC, sizeof(VC));
ptr += sizeof(VC);
// crypto_provide
memset(ptr, 0, CRYPTO_BITFIELD_LENGTH);
if(option_->get(PREF_BT_MIN_CRYPTO_LEVEL) == V_PLAIN) {
ptr[3] = CRYPTO_PLAIN_TEXT;
}
ptr[3] |= CRYPTO_ARC4;
ptr += CRYPTO_BITFIELD_LENGTH;
// len(padC)
uint16_t padCLength =
SimpleRandomizer::getInstance()->getRandomNumber(MAX_PAD_LENGTH+1);
{
uint16_t padCLengthBE = htons(padCLength);
memcpy(ptr, &padCLengthBE, sizeof(padCLengthBE));
}
ptr += 2;
// padC
memset(ptr, 0, padCLength);
ptr += padCLength;
// len(IA)
// currently, IA is zero-length.
uint16_t iaLength = 0;
{
uint16_t iaLengthBE = htons(iaLength);
memcpy(ptr, &iaLengthBE, sizeof(iaLengthBE));
}
ptr += 2;
encryptAndSendData(buffer, ptr-buffer);
bufp.reset(0);
}
// This function reads exactly until the end of VC marker is reached.
bool MSEHandshake::findInitiatorVCMarker()
{
// 616 is synchronization point of initiator
// find vc
unsigned char* ptr =
std::search(&rbuf_[0], &rbuf_[rbufLength_],
&initiatorVCMarker_[0], &initiatorVCMarker_[VC_LENGTH]);
if(ptr == &rbuf_[rbufLength_]) {
if(616-KEY_LENGTH <= rbufLength_) {
throw DL_ABORT_EX("Failed to find VC marker.");
} else {
wantRead_ = true;
return false;
}
}
markerIndex_ = ptr-rbuf_;
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - VC marker found at %lu",
cuid_,
static_cast<unsigned long>(markerIndex_)));
verifyVC(rbuf_+markerIndex_);
// shift rbuf
shiftBuffer(markerIndex_+VC_LENGTH);
return true;
}
bool MSEHandshake::receiveInitiatorCryptoSelectAndPadDLength()
{
if(CRYPTO_BITFIELD_LENGTH+2/* PadD length*/ > rbufLength_) {
wantRead_ = true;
return false;
}
//verifyCryptoSelect
unsigned char* rbufptr = rbuf_;
decryptor_->encrypt(CRYPTO_BITFIELD_LENGTH, rbufptr, rbufptr);
if(rbufptr[3]&CRYPTO_PLAIN_TEXT &&
option_->get(PREF_BT_MIN_CRYPTO_LEVEL) == V_PLAIN) {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - peer prefers plaintext.",
cuid_));
negotiatedCryptoType_ = CRYPTO_PLAIN_TEXT;
}
if(rbufptr[3]&CRYPTO_ARC4) {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - peer prefers ARC4",
cuid_));
negotiatedCryptoType_ = CRYPTO_ARC4;
}
if(negotiatedCryptoType_ == CRYPTO_NONE) {
throw DL_ABORT_EX
(fmt("CUID#%" PRId64 " - No supported crypto type selected.",
cuid_));
}
// padD length
rbufptr += CRYPTO_BITFIELD_LENGTH;
padLength_ = verifyPadLength(rbufptr, "PadD");
// shift rbuf
shiftBuffer(CRYPTO_BITFIELD_LENGTH+2/* PadD length*/);
return true;
}
bool MSEHandshake::receivePad()
{
if(padLength_ > rbufLength_) {
wantRead_ = true;
return false;
}
if(padLength_ == 0) {
return true;
}
decryptor_->encrypt(padLength_, rbuf_, rbuf_);
// shift rbuf_
shiftBuffer(padLength_);
return true;
}
bool MSEHandshake::findReceiverHashMarker()
{
// 628 is synchronization limit of receiver.
// find hash('req1', S), S is secret_.
unsigned char md[20];
createReq1Hash(md);
unsigned char* ptr = std::search
(&rbuf_[0], &rbuf_[rbufLength_], &md[0], &md[sizeof(md)]);
if(ptr == &rbuf_[rbufLength_]) {
if(628-KEY_LENGTH <= rbufLength_) {
throw DL_ABORT_EX("Failed to find hash marker.");
} else {
wantRead_ = true;
return false;
}
}
markerIndex_ = ptr-rbuf_;
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - Hash marker found at %lu.",
cuid_,
static_cast<unsigned long>(markerIndex_)));
verifyReq1Hash(rbuf_+markerIndex_);
// shift rbuf_
shiftBuffer(markerIndex_+20);
return true;
}
bool MSEHandshake::receiveReceiverHashAndPadCLength
(const std::vector<SharedHandle<DownloadContext> >& downloadContexts)
{
if(20+VC_LENGTH+CRYPTO_BITFIELD_LENGTH+2/*PadC length*/ > rbufLength_) {
wantRead_ = true;
return false;
}
// resolve info hash
// pointing to the position of HASH('req2', SKEY) xor HASH('req3', S)
unsigned char* rbufptr = rbuf_;
SharedHandle<DownloadContext> downloadContext;
for(std::vector<SharedHandle<DownloadContext> >::const_iterator i =
downloadContexts.begin(), eoi = downloadContexts.end();
i != eoi; ++i) {
unsigned char md[20];
const unsigned char* infohash = bittorrent::getInfoHash(*i);
createReq23Hash(md, infohash);
if(memcmp(md, rbufptr, sizeof(md)) == 0) {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - info hash found: %s",
cuid_,
util::toHex(infohash, INFO_HASH_LENGTH).c_str()));
downloadContext = *i;
break;
}
}
if(!downloadContext) {
throw DL_ABORT_EX("Unknown info hash.");
}
initCipher(bittorrent::getInfoHash(downloadContext));
// decrypt VC
rbufptr += 20;
verifyVC(rbufptr);
// decrypt crypto_provide
rbufptr += VC_LENGTH;
decryptor_->encrypt(CRYPTO_BITFIELD_LENGTH, rbufptr, rbufptr);
// TODO choose the crypto type based on the preference.
// For now, choose ARC4.
if(rbufptr[3]&CRYPTO_PLAIN_TEXT &&
option_->get(PREF_BT_MIN_CRYPTO_LEVEL) == V_PLAIN) {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - peer provides plaintext.",
cuid_));
negotiatedCryptoType_ = CRYPTO_PLAIN_TEXT;
} else if(rbufptr[3]&CRYPTO_ARC4) {
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - peer provides ARC4.",
cuid_));
negotiatedCryptoType_ = CRYPTO_ARC4;
}
if(negotiatedCryptoType_ == CRYPTO_NONE) {
throw DL_ABORT_EX
(fmt("CUID#%" PRId64 " - No supported crypto type provided.",
cuid_));
}
// decrypt PadC length
rbufptr += CRYPTO_BITFIELD_LENGTH;
padLength_ = verifyPadLength(rbufptr, "PadC");
// shift rbuf_
shiftBuffer(20+VC_LENGTH+CRYPTO_BITFIELD_LENGTH+2/*PadC length*/);
return true;
}
bool MSEHandshake::receiveReceiverIALength()
{
if(2 > rbufLength_) {
wantRead_ = true;
return false;
}
iaLength_ = decodeLength16(rbuf_);
if(iaLength_ > BtHandshakeMessage::MESSAGE_LENGTH) {
throw DL_ABORT_EX(fmt("Too large IA length length: %u", iaLength_));
}
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - len(IA)=%u.", cuid_, iaLength_));
// shift rbuf_
shiftBuffer(2);
return true;
}
bool MSEHandshake::receiveReceiverIA()
{
if(iaLength_ == 0) {
return true;
}
if(iaLength_ > rbufLength_) {
wantRead_ = true;
return false;
}
delete [] ia_;
ia_ = new unsigned char[iaLength_];
decryptor_->encrypt(iaLength_, ia_, rbuf_);
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - IA received.", cuid_));
// shift rbuf_
shiftBuffer(iaLength_);
return true;
}
void MSEHandshake::sendReceiverStep2()
{
// buffer is filled in this order:
// VC(VC_LENGTH bytes),
// cryptoSelect(CRYPTO_BITFIELD_LENGTH bytes),
// len(padD)(2bytes),
// padD(len(padD)bytes <= MAX_PAD_LENGTH)
unsigned char* buffer = new unsigned char
[VC_LENGTH+CRYPTO_BITFIELD_LENGTH+2+MAX_PAD_LENGTH];
array_ptr<unsigned char> bufp(buffer);
unsigned char* ptr = buffer;
// VC
memcpy(ptr, VC, sizeof(VC));
ptr += sizeof(VC);
// crypto_select
memset(ptr, 0, CRYPTO_BITFIELD_LENGTH);
ptr[3] = negotiatedCryptoType_;
ptr += CRYPTO_BITFIELD_LENGTH;
// len(padD)
uint16_t padDLength =
SimpleRandomizer::getInstance()->getRandomNumber(MAX_PAD_LENGTH+1);
uint16_t padDLengthBE = htons(padDLength);
memcpy(ptr, &padDLengthBE, sizeof(padDLengthBE));
ptr += sizeof(padDLengthBE);
// padD, all zeroed
memset(ptr, 0, padDLength);
ptr += padDLength;
encryptAndSendData(buffer, ptr-buffer);
bufp.reset(0);
}
uint16_t MSEHandshake::verifyPadLength(const unsigned char* padlenbuf, const char* padName)
{
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - Verifying Pad length for %s",
cuid_, padName));
uint16_t padLength = decodeLength16(padlenbuf);
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - len(%s)=%u",
cuid_, padName, padLength));
if(padLength > 512) {
throw DL_ABORT_EX
(fmt("Too large %s length: %u", padName, padLength));
}
return padLength;
}
void MSEHandshake::verifyVC(unsigned char* vcbuf)
{
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - Verifying VC.", cuid_));
decryptor_->encrypt(VC_LENGTH, vcbuf, vcbuf);
if(memcmp(VC, vcbuf, VC_LENGTH) != 0) {
throw DL_ABORT_EX
(fmt("Invalid VC: %s", util::toHex(vcbuf, VC_LENGTH).c_str()));
}
}
void MSEHandshake::verifyReq1Hash(const unsigned char* req1buf)
{
A2_LOG_DEBUG(fmt("CUID#%" PRId64 " - Verifying req hash.", cuid_));
unsigned char md[20];
createReq1Hash(md);
if(memcmp(md, req1buf, sizeof(md)) != 0) {
throw DL_ABORT_EX("Invalid req1 hash found.");
}
}
bool MSEHandshake::getWantWrite() const
{
return !socketBuffer_.sendBufferIsEmpty();
}
} // namespace aria2