aria2/src/SocketCore.cc

1379 lines
37 KiB
C++

/* <!-- copyright */
/*
* aria2 - The high speed download utility
*
* Copyright (C) 2006 Tatsuhiro Tsujikawa
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* In addition, as a special exception, the copyright holders give
* permission to link the code of portions of this program with the
* OpenSSL library under certain conditions as described in each
* individual source file, and distribute linked combinations
* including the two.
* You must obey the GNU General Public License in all respects
* for all of the code used other than OpenSSL. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you
* do not wish to do so, delete this exception statement from your
* version. If you delete this exception statement from all source
* files in the program, then also delete it here.
*/
/* copyright --> */
#include "SocketCore.h"
#include <unistd.h>
#ifdef HAVE_IFADDRS_H
# include <ifaddrs.h>
#endif // HAVE_IFADDRS_H
#include <cerrno>
#include <cstring>
#ifdef HAVE_LIBGNUTLS
# include <gnutls/x509.h>
#endif // HAVE_LIBGNUTLS
#include "message.h"
#include "a2netcompat.h"
#include "DlRetryEx.h"
#include "DlAbortEx.h"
#include "StringFormat.h"
#include "util.h"
#include "TimeA2.h"
#include "a2functional.h"
#include "LogFactory.h"
#ifdef ENABLE_SSL
# include "TLSContext.h"
#endif // ENABLE_SSL
namespace aria2 {
#ifndef __MINGW32__
# define SOCKET_ERRNO (errno)
#else
# define SOCKET_ERRNO (WSAGetLastError())
#endif // __MINGW32__
#ifdef __MINGW32__
# define A2_EINPROGRESS WSAEWOULDBLOCK
# define A2_EWOULDBLOCK WSAEWOULDBLOCK
# define A2_EINTR WSAEINTR
# define A2_WOULDBLOCK(e) (e == WSAEWOULDBLOCK)
#else // !__MINGW32__
# define A2_EINPROGRESS EINPROGRESS
# ifndef EWOULDBLOCK
# define EWOULDBLOCK EAGAIN
# endif // EWOULDBLOCK
# define A2_EWOULDBLOCK EWOULDBLOCK
# define A2_EINTR EINTR
# if EWOULDBLOCK == EAGAIN
# define A2_WOULDBLOCK(e) (e == EWOULDBLOCK)
# else // EWOULDBLOCK != EAGAIN
# define A2_WOULDBLOCK(e) (e == EWOULDBLOCK || e == EAGAIN)
# endif // EWOULDBLOCK != EAGAIN
#endif // !__MINGW32__
#ifdef __MINGW32__
# define CLOSE(X) ::closesocket(X)
#else
# define CLOSE(X) while(close(X) == -1 && errno == EINTR)
#endif // __MINGW32__
static const char *errorMsg(const int err)
{
#ifndef __MINGW32__
return strerror(err);
#else
static char buf[256];
if (FormatMessage(
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
err,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &buf,
sizeof(buf),
NULL
) == 0) {
snprintf(buf, sizeof(buf), EX_SOCKET_UNKNOWN_ERROR, err, err);
}
return buf;
#endif // __MINGW32__
}
static const char *errorMsg()
{
return errorMsg(SOCKET_ERRNO);
}
#ifdef HAVE_EPOLL
SocketCore::PollMethod SocketCore::_pollMethod = SocketCore::POLL_METHOD_EPOLL;
#else // !HAVE_EPOLL
SocketCore::PollMethod SocketCore::_pollMethod = SocketCore::POLL_METHOD_SELECT;
#endif // !HAVE_EPOLL
int SocketCore::_protocolFamily = AF_UNSPEC;
std::vector<std::pair<struct sockaddr_storage, socklen_t> >
SocketCore::_bindAddrs;
#ifdef ENABLE_SSL
SharedHandle<TLSContext> SocketCore::_tlsContext;
void SocketCore::setTLSContext(const SharedHandle<TLSContext>& tlsContext)
{
_tlsContext = tlsContext;
}
#endif // ENABLE_SSL
SocketCore::SocketCore(int sockType):_sockType(sockType), sockfd(-1) {
init();
}
SocketCore::SocketCore(sock_t sockfd, int sockType):_sockType(sockType), sockfd(sockfd) {
init();
}
void SocketCore::init()
{
#ifdef HAVE_EPOLL
_epfd = -1;
#endif // HAVE_EPOLL
blocking = true;
secure = 0;
_wantRead = false;
_wantWrite = false;
#ifdef HAVE_LIBSSL
// for SSL
ssl = NULL;
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
sslSession = NULL;
peekBufMax = 4096;
peekBuf = 0;
peekBufLength = 0;
#endif //HAVE_LIBGNUTLS
}
SocketCore::~SocketCore() {
closeConnection();
#ifdef HAVE_EPOLL
if(_epfd != -1) {
CLOSE(_epfd);
}
#endif // HAVE_EPOLL
#ifdef HAVE_LIBGNUTLS
delete [] peekBuf;
#endif // HAVE_LIBGNUTLS
}
template<typename T>
std::string uitos(T value)
{
std::string str;
if(value == 0) {
str = "0";
return str;
}
while(value) {
char digit = value%10+'0';
str.insert(str.begin(), digit);
value /= 10;
}
return str;
}
void SocketCore::create(int family, int protocol)
{
closeConnection();
sock_t fd = socket(family, _sockType, protocol);
if(fd == (sock_t) -1) {
throw DL_ABORT_EX
(StringFormat("Failed to create socket. Cause:%s", errorMsg()).str());
}
int sockopt = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) {
CLOSE(fd);
throw DL_ABORT_EX
(StringFormat("Failed to create socket. Cause:%s", errorMsg()).str());
}
sockfd = fd;
}
static sock_t bindInternal(int family, int socktype, int protocol,
const struct sockaddr* addr, socklen_t addrlen,
std::string& error)
{
sock_t fd = socket(family, socktype, protocol);
if(fd == (sock_t) -1) {
return -1;
}
int sockopt = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt,
sizeof(sockopt)) < 0) {
CLOSE(fd);
return -1;
}
if(::bind(fd, addr, addrlen) == -1) {
error = errorMsg();
CLOSE(fd);
return -1;
}
return fd;
}
static sock_t bindTo
(const char* host, uint16_t port, int family, int sockType,
int getaddrinfoFlags, std::string& error)
{
struct addrinfo* res;
int s = callGetaddrinfo(&res, host, uitos(port).c_str(), family, sockType,
getaddrinfoFlags, 0);
if(s) {
error = gai_strerror(s);
return -1;
}
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
for(rp = res; rp; rp = rp->ai_next) {
sock_t fd = bindInternal(rp->ai_family, rp->ai_socktype, rp->ai_protocol,
rp->ai_addr, rp->ai_addrlen, error);
if(fd != (sock_t)-1) {
return fd;
}
}
return -1;
}
void SocketCore::bindWithFamily(uint16_t port, int family, int flags)
{
closeConnection();
std::string error;
sock_t fd = bindTo(0, port, family, _sockType, flags, error);
if(fd == (sock_t) -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_BIND, error.c_str()).str());
} else {
sockfd = fd;
}
}
void SocketCore::bind(const std::string& addr, uint16_t port, int flags)
{
closeConnection();
std::string error;
sock_t fd =
bindTo(addr.c_str(), port, _protocolFamily, _sockType, flags, error);
if(fd == (sock_t)-1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_BIND, error.c_str()).str());
} else {
sockfd = fd;
}
}
void SocketCore::bind(uint16_t port, int flags)
{
closeConnection();
std::string error;
if(!(flags&AI_PASSIVE) || _bindAddrs.empty()) {
sock_t fd = bindTo(0, port, _protocolFamily, _sockType, flags, error);
if(fd != (sock_t) -1) {
sockfd = fd;
}
} else {
for(std::vector<std::pair<struct sockaddr_storage, socklen_t> >::
const_iterator i = _bindAddrs.begin(), eoi = _bindAddrs.end();
i != eoi; ++i) {
char host[NI_MAXHOST];
int s;
s = getnameinfo(reinterpret_cast<const struct sockaddr*>(&(*i).first),
(*i).second,
host, NI_MAXHOST, 0, NI_MAXSERV,
NI_NUMERICHOST);
if(s) {
error = gai_strerror(s);
continue;
}
sock_t fd = bindTo(host, port, _protocolFamily, _sockType, flags, error);
if(fd != (sock_t)-1) {
sockfd = fd;
break;
}
}
}
if(sockfd == (sock_t) -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_BIND, error.c_str()).str());
}
}
void SocketCore::bind(const struct sockaddr* addr, socklen_t addrlen)
{
closeConnection();
std::string error;
sock_t fd = bindInternal(addr->sa_family, _sockType, 0, addr, addrlen, error);
if(fd != (sock_t)-1) {
sockfd = fd;
} else {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_BIND, error.c_str()).str());
}
}
void SocketCore::beginListen()
{
if(listen(sockfd, 1) == -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_LISTEN, errorMsg()).str());
}
}
SocketCore* SocketCore::acceptConnection() const
{
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
sock_t fd;
while((fd = accept(sockfd, reinterpret_cast<struct sockaddr*>(&sockaddr), &len)) == (sock_t) -1 && SOCKET_ERRNO == A2_EINTR);
if(fd == (sock_t) -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_ACCEPT, errorMsg()).str());
}
return new SocketCore(fd, _sockType);
}
void SocketCore::getAddrInfo(std::pair<std::string, uint16_t>& addrinfo) const
{
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
struct sockaddr* addrp = reinterpret_cast<struct sockaddr*>(&sockaddr);
if(getsockname(sockfd, addrp, &len) == -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_GET_NAME, errorMsg()).str());
}
addrinfo = util::getNumericNameInfo(addrp, len);
}
void SocketCore::getPeerInfo(std::pair<std::string, uint16_t>& peerinfo) const
{
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
struct sockaddr* addrp = reinterpret_cast<struct sockaddr*>(&sockaddr);
if(getpeername(sockfd, addrp, &len) == -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_GET_NAME, errorMsg()).str());
}
peerinfo = util::getNumericNameInfo(addrp, len);
}
void SocketCore::establishConnection(const std::string& host, uint16_t port)
{
closeConnection();
std::string error;
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, host.c_str(), uitos(port).c_str(), _protocolFamily,
_sockType, 0, 0);
if(s) {
throw DL_ABORT_EX(StringFormat(EX_RESOLVE_HOSTNAME,
host.c_str(), gai_strerror(s)).str());
}
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
for(rp = res; rp; rp = rp->ai_next) {
sock_t fd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if(fd == (sock_t) -1) {
error = errorMsg();
continue;
}
int sockopt = 1;
if(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (a2_sockopt_t) &sockopt, sizeof(sockopt)) < 0) {
error = errorMsg();
CLOSE(fd);
continue;
}
if(!_bindAddrs.empty()) {
bool bindSuccess = false;
for(std::vector<std::pair<struct sockaddr_storage, socklen_t> >::
const_iterator i = _bindAddrs.begin(), eoi = _bindAddrs.end();
i != eoi; ++i) {
if(::bind(fd,reinterpret_cast<const struct sockaddr*>(&(*i).first),
(*i).second) == -1) {
error = errorMsg();
if(LogFactory::getInstance()->debug()) {
LogFactory::getInstance()->debug(EX_SOCKET_BIND, error.c_str());
}
} else {
bindSuccess = true;
break;
}
}
if(!bindSuccess) {
CLOSE(fd);
continue;
}
}
sockfd = fd;
// make socket non-blocking mode
setNonBlockingMode();
if(connect(fd, rp->ai_addr, rp->ai_addrlen) == -1 &&
SOCKET_ERRNO != A2_EINPROGRESS) {
error = errorMsg();
CLOSE(sockfd);
sockfd = (sock_t) -1;
continue;
}
// TODO at this point, connection may not be established and it may fail
// later. In such case, next ai_addr should be tried.
break;
}
if(sockfd == (sock_t) -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_CONNECT, host.c_str(),
error.c_str()).str());
}
}
void SocketCore::setSockOpt
(int level, int optname, void* optval, socklen_t optlen)
{
if(setsockopt(sockfd, level, optname, (a2_sockopt_t)optval, optlen) < 0) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_SET_OPT, errorMsg()).str());
}
}
void SocketCore::setMulticastInterface(const std::string& localAddr)
{
in_addr addr;
if(localAddr.empty()) {
addr.s_addr = htonl(INADDR_ANY);
} else {
if(inet_aton(localAddr.c_str(), &addr) == 0) {
throw DL_ABORT_EX
(StringFormat("inet_aton failed for %s", localAddr.c_str()).str());
}
}
setSockOpt(IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr));
}
void SocketCore::setMulticastTtl(unsigned char ttl)
{
setSockOpt(IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));
}
void SocketCore::setMulticastLoop(unsigned char loop)
{
setSockOpt(IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop));
}
void SocketCore::joinMulticastGroup
(const std::string& multicastAddr, uint16_t multicastPort,
const std::string& localAddr)
{
in_addr multiAddr;
if(inet_aton(multicastAddr.c_str(), &multiAddr) == 0) {
throw DL_ABORT_EX
(StringFormat("inet_aton failed for %s", multicastAddr.c_str()).str());
}
in_addr ifAddr;
if(localAddr.empty()) {
ifAddr.s_addr = htonl(INADDR_ANY);
} else {
if(inet_aton(localAddr.c_str(), &ifAddr) == 0) {
throw DL_ABORT_EX
(StringFormat("inet_aton failed for %s", localAddr.c_str()).str());
}
}
struct ip_mreq mreq;
memset(&mreq, 0, sizeof(mreq));
mreq.imr_multiaddr = multiAddr;
mreq.imr_interface = ifAddr;
setSockOpt(IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
}
void SocketCore::setNonBlockingMode()
{
#ifdef __MINGW32__
static u_long flag = 1;
if (::ioctlsocket(sockfd, FIONBIO, &flag) == -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_NONBLOCKING, errorMsg()).str());
}
#else
int flags;
while((flags = fcntl(sockfd, F_GETFL, 0)) == -1 && errno == EINTR);
// TODO add error handling
while(fcntl(sockfd, F_SETFL, flags|O_NONBLOCK) == -1 && errno == EINTR);
#endif // __MINGW32__
blocking = false;
}
void SocketCore::setBlockingMode()
{
#ifdef __MINGW32__
static u_long flag = 0;
if (::ioctlsocket(sockfd, FIONBIO, &flag) == -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_BLOCKING, errorMsg()).str());
}
#else
int flags;
while((flags = fcntl(sockfd, F_GETFL, 0)) == -1 && errno == EINTR);
// TODO add error handling
while(fcntl(sockfd, F_SETFL, flags&(~O_NONBLOCK)) == -1 && errno == EINTR);
#endif // __MINGW32__
blocking = true;
}
void SocketCore::closeConnection()
{
#ifdef HAVE_LIBSSL
// for SSL
if(secure) {
SSL_shutdown(ssl);
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
if(secure) {
gnutls_bye(sslSession, GNUTLS_SHUT_RDWR);
}
#endif // HAVE_LIBGNUTLS
if(sockfd != (sock_t) -1) {
CLOSE(sockfd);
sockfd = -1;
}
#ifdef HAVE_LIBSSL
// for SSL
if(secure) {
SSL_free(ssl);
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
if(secure) {
gnutls_deinit(sslSession);
}
#endif // HAVE_LIBGNUTLS
}
#ifdef HAVE_EPOLL
void SocketCore::initEPOLL()
{
if((_epfd = epoll_create(1)) == -1) {
throw DL_RETRY_EX(StringFormat("epoll_create failed:%s", errorMsg()).str());
}
memset(&_epEvent, 0, sizeof(struct epoll_event));
_epEvent.events = EPOLLIN|EPOLLOUT;
_epEvent.data.fd = sockfd;
if(epoll_ctl(_epfd, EPOLL_CTL_ADD, sockfd, &_epEvent) == -1) {
throw DL_RETRY_EX(StringFormat("epoll_ctl failed:%s", errorMsg()).str());
}
}
#endif // HAVE_EPOLL
bool SocketCore::isWritable(time_t timeout)
{
#ifdef HAVE_EPOLL
if(_pollMethod == SocketCore::POLL_METHOD_EPOLL) {
if(_epfd == -1) {
initEPOLL();
}
struct epoll_event epEvents[1];
int r;
while((r = epoll_wait(_epfd, epEvents, 1, 0)) == -1 && errno == EINTR);
if(r > 0) {
return epEvents[0].events&(EPOLLOUT|EPOLLHUP|EPOLLERR);
} else if(r == 0) {
return false;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_CHECK_WRITABLE, errorMsg()).str());
}
} else
#endif // HAVE_EPOLL
if(_pollMethod == SocketCore::POLL_METHOD_SELECT) {
fd_set fds;
FD_ZERO(&fds);
FD_SET(sockfd, &fds);
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
int r = select(sockfd+1, NULL, &fds, NULL, &tv);
if(r == 1) {
return true;
} else if(r == 0) {
// time out
return false;
} else {
if(SOCKET_ERRNO == A2_EINPROGRESS || SOCKET_ERRNO == A2_EINTR) {
return false;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_CHECK_WRITABLE, errorMsg()).str());
}
}
} else {
abort();
}
}
bool SocketCore::isReadable(time_t timeout)
{
#ifdef HAVE_LIBGNUTLS
if(secure && peekBufLength > 0) {
return true;
}
#endif // HAVE_LIBGNUTLS
#ifdef HAVE_EPOLL
if(_pollMethod == SocketCore::POLL_METHOD_EPOLL) {
if(_epfd == -1) {
initEPOLL();
}
struct epoll_event epEvents[1];
int r;
while((r = epoll_wait(_epfd, epEvents, 1, 0)) == -1 && errno == EINTR);
if(r > 0) {
return epEvents[0].events&(EPOLLIN|EPOLLHUP|EPOLLERR);
} else if(r == 0) {
return false;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_CHECK_READABLE, errorMsg()).str());
}
} else
#endif // HAVE_EPOLL
if(_pollMethod == SocketCore::POLL_METHOD_SELECT) {
fd_set fds;
FD_ZERO(&fds);
FD_SET(sockfd, &fds);
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
int r = select(sockfd+1, &fds, NULL, NULL, &tv);
if(r == 1) {
return true;
} else if(r == 0) {
// time out
return false;
} else {
if(SOCKET_ERRNO == A2_EINPROGRESS || SOCKET_ERRNO == A2_EINTR) {
return false;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_CHECK_READABLE, errorMsg()).str());
}
}
} else {
abort();
}
}
#ifdef HAVE_LIBSSL
int SocketCore::sslHandleEAGAIN(int ret)
{
int error = SSL_get_error(ssl, ret);
if(error == SSL_ERROR_WANT_READ || error == SSL_ERROR_WANT_WRITE) {
ret = 0;
if(error == SSL_ERROR_WANT_READ) {
_wantRead = true;
} else {
_wantWrite = true;
}
}
return ret;
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
void SocketCore::gnutlsRecordCheckDirection()
{
int direction = gnutls_record_get_direction(sslSession);
if(direction == 0) {
_wantRead = true;
} else { // if(direction == 1) {
_wantWrite = true;
}
}
#endif // HAVE_LIBGNUTLS
ssize_t SocketCore::writeData(const char* data, size_t len)
{
ssize_t ret = 0;
_wantRead = false;
_wantWrite = false;
if(!secure) {
while((ret = send(sockfd, data, len, 0)) == -1 && SOCKET_ERRNO == A2_EINTR);
if(ret == -1) {
if(A2_WOULDBLOCK(SOCKET_ERRNO)) {
_wantWrite = true;
ret = 0;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_SEND, errorMsg()).str());
}
}
} else {
#ifdef HAVE_LIBSSL
ret = SSL_write(ssl, data, len);
if(ret < 0) {
ret = sslHandleEAGAIN(ret);
}
if(ret < 0) {
throw DL_RETRY_EX
(StringFormat
(EX_SOCKET_SEND, ERR_error_string(SSL_get_error(ssl, ret), 0)).str());
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
while((ret = gnutls_record_send(sslSession, data, len)) ==
GNUTLS_E_INTERRUPTED);
if(ret == GNUTLS_E_AGAIN) {
gnutlsRecordCheckDirection();
ret = 0;
} else if(ret < 0) {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_SEND, gnutls_strerror(ret)).str());
}
#endif // HAVE_LIBGNUTLS
}
return ret;
}
void SocketCore::readData(char* data, size_t& len)
{
ssize_t ret = 0;
_wantRead = false;
_wantWrite = false;
if(!secure) {
while((ret = recv(sockfd, data, len, 0)) == -1 && SOCKET_ERRNO == A2_EINTR);
if(ret == -1) {
if(A2_WOULDBLOCK(SOCKET_ERRNO)) {
_wantRead = true;
ret = 0;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_RECV, errorMsg()).str());
}
}
} else {
#ifdef HAVE_LIBSSL
// for SSL
// TODO handling len == 0 case required
ret = SSL_read(ssl, data, len);
if(ret < 0) {
ret = sslHandleEAGAIN(ret);
}
if(ret < 0) {
throw DL_RETRY_EX
(StringFormat
(EX_SOCKET_RECV, ERR_error_string(SSL_get_error(ssl, ret), 0)).str());
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
ret = gnutlsRecv(data, len);
if(ret == GNUTLS_E_AGAIN) {
gnutlsRecordCheckDirection();
ret = 0;
} else if(ret < 0) {
throw DL_RETRY_EX
(StringFormat(EX_SOCKET_RECV, gnutls_strerror(ret)).str());
}
#endif // HAVE_LIBGNUTLS
}
len = ret;
}
void SocketCore::peekData(char* data, size_t& len)
{
ssize_t ret = 0;
_wantRead = false;
_wantWrite = false;
if(!secure) {
while((ret = recv(sockfd, data, len, MSG_PEEK)) == -1 &&
SOCKET_ERRNO == A2_EINTR);
if(ret == -1) {
if(A2_WOULDBLOCK(SOCKET_ERRNO)) {
_wantRead = true;
ret = 0;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_PEEK, errorMsg()).str());
}
}
} else {
#ifdef HAVE_LIBSSL
// for SSL
// TODO handling len == 0 case required
ret = SSL_peek(ssl, data, len);
if(ret < 0) {
ret = sslHandleEAGAIN(ret);
}
if(ret < 0) {
throw DL_RETRY_EX
(StringFormat(EX_SOCKET_PEEK,
ERR_error_string(SSL_get_error(ssl, ret), 0)).str());
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
ret = gnutlsPeek(data, len);
if(ret == GNUTLS_E_AGAIN) {
gnutlsRecordCheckDirection();
ret = 0;
} else if(ret < 0) {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_PEEK,
gnutls_strerror(ret)).str());
}
#endif // HAVE_LIBGNUTLS
}
len = ret;
}
#ifdef HAVE_LIBGNUTLS
size_t SocketCore::shiftPeekData(char* data, size_t len)
{
if(peekBufLength <= len) {
memcpy(data, peekBuf, peekBufLength);
size_t ret = peekBufLength;
peekBufLength = 0;
return ret;
} else {
memcpy(data, peekBuf, len);
char* temp = new char[peekBufMax];
memcpy(temp, peekBuf+len, peekBufLength-len);
delete [] peekBuf;
peekBuf = temp;
peekBufLength -= len;
return len;
}
}
void SocketCore::addPeekData(char* data, size_t len)
{
if(peekBufLength+len > peekBufMax) {
char* temp = new char[peekBufMax+len];
memcpy(temp, peekBuf, peekBufLength);
delete [] peekBuf;
peekBuf = temp;
peekBufMax = peekBufLength+len;
}
memcpy(peekBuf+peekBufLength, data, len);
peekBufLength += len;
}
static ssize_t GNUTLS_RECORD_RECV_NO_INTERRUPT
(gnutls_session_t sslSession, char* data, size_t len)
{
int ret;
while((ret = gnutls_record_recv(sslSession, data, len)) ==
GNUTLS_E_INTERRUPTED);
if(ret < 0 && ret != GNUTLS_E_AGAIN) {
throw DL_RETRY_EX
(StringFormat(EX_SOCKET_RECV, gnutls_strerror(ret)).str());
}
return ret;
}
ssize_t SocketCore::gnutlsRecv(char* data, size_t len)
{
size_t plen = shiftPeekData(data, len);
if(plen < len) {
ssize_t ret = GNUTLS_RECORD_RECV_NO_INTERRUPT
(sslSession, data+plen, len-plen);
if(ret == GNUTLS_E_AGAIN) {
return GNUTLS_E_AGAIN;
}
return plen+ret;
} else {
return plen;
}
}
ssize_t SocketCore::gnutlsPeek(char* data, size_t len)
{
if(peekBufLength >= len) {
memcpy(data, peekBuf, len);
return len;
} else {
memcpy(data, peekBuf, peekBufLength);
ssize_t ret = GNUTLS_RECORD_RECV_NO_INTERRUPT
(sslSession, data+peekBufLength, len-peekBufLength);
if(ret == GNUTLS_E_AGAIN) {
return GNUTLS_E_AGAIN;
}
addPeekData(data+peekBufLength, ret);
return peekBufLength;
}
}
#endif // HAVE_LIBGNUTLS
void SocketCore::prepareSecureConnection()
{
if(!secure) {
#ifdef HAVE_LIBSSL
// for SSL
ssl = SSL_new(_tlsContext->getSSLCtx());
if(!ssl) {
throw DL_ABORT_EX
(StringFormat(EX_SSL_INIT_FAILURE,
ERR_error_string(ERR_get_error(), 0)).str());
}
if(SSL_set_fd(ssl, sockfd) == 0) {
throw DL_ABORT_EX
(StringFormat(EX_SSL_INIT_FAILURE,
ERR_error_string(ERR_get_error(), 0)).str());
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
int r;
gnutls_init(&sslSession, GNUTLS_CLIENT);
// It seems err is not error message, but the argument string
// which causes syntax error.
const char* err;
// Disables TLS1.1 here because there are servers that don't
// understand TLS1.1.
r = gnutls_priority_set_direct(sslSession, "NORMAL:!VERS-TLS1.1", &err);
if(r != GNUTLS_E_SUCCESS) {
throw DL_ABORT_EX
(StringFormat(EX_SSL_INIT_FAILURE, gnutls_strerror(r)).str());
}
// put the x509 credentials to the current session
gnutls_credentials_set(sslSession, GNUTLS_CRD_CERTIFICATE,
_tlsContext->getCertCred());
gnutls_transport_set_ptr(sslSession, (gnutls_transport_ptr_t)sockfd);
#endif // HAVE_LIBGNUTLS
secure = 1;
}
}
bool SocketCore::initiateSecureConnection(const std::string& hostname)
{
if(secure == 1) {
_wantRead = false;
_wantWrite = false;
#ifdef HAVE_LIBSSL
int e = SSL_connect(ssl);
if (e <= 0) {
int ssl_error = SSL_get_error(ssl, e);
switch(ssl_error) {
case SSL_ERROR_NONE:
break;
case SSL_ERROR_WANT_READ:
_wantRead = true;
return false;
case SSL_ERROR_WANT_WRITE:
_wantWrite = true;
return false;
case SSL_ERROR_WANT_X509_LOOKUP:
case SSL_ERROR_ZERO_RETURN:
if (blocking) {
throw DL_ABORT_EX
(StringFormat(EX_SSL_CONNECT_ERROR, ssl_error).str());
}
break;
case SSL_ERROR_SYSCALL:
throw DL_ABORT_EX(EX_SSL_IO_ERROR);
case SSL_ERROR_SSL:
throw DL_ABORT_EX(EX_SSL_PROTOCOL_ERROR);
default:
throw DL_ABORT_EX
(StringFormat(EX_SSL_UNKNOWN_ERROR, ssl_error).str());
}
}
if(_tlsContext->peerVerificationEnabled()) {
// verify peer
X509* peerCert = SSL_get_peer_certificate(ssl);
if(!peerCert) {
throw DL_ABORT_EX(MSG_NO_CERT_FOUND);
}
auto_delete<X509*> certDeleter(peerCert, X509_free);
long verifyResult = SSL_get_verify_result(ssl);
if(verifyResult != X509_V_OK) {
throw DL_ABORT_EX
(StringFormat(MSG_CERT_VERIFICATION_FAILED,
X509_verify_cert_error_string(verifyResult)).str());
}
X509_NAME* name = X509_get_subject_name(peerCert);
if(!name) {
throw DL_ABORT_EX("Could not get X509 name object from the certificate.");
}
bool hostnameOK = false;
int lastpos = -1;
while(true) {
lastpos = X509_NAME_get_index_by_NID(name, NID_commonName, lastpos);
if(lastpos == -1) {
break;
}
X509_NAME_ENTRY* entry = X509_NAME_get_entry(name, lastpos);
unsigned char* out;
int outlen = ASN1_STRING_to_UTF8(&out, X509_NAME_ENTRY_get_data(entry));
if(outlen < 0) {
continue;
}
std::string commonName(&out[0], &out[outlen]);
OPENSSL_free(out);
if(commonName == hostname) {
hostnameOK = true;
break;
}
}
if(!hostnameOK) {
throw DL_ABORT_EX(MSG_HOSTNAME_NOT_MATCH);
}
}
#endif // HAVE_LIBSSL
#ifdef HAVE_LIBGNUTLS
int ret = gnutls_handshake(sslSession);
if(ret == GNUTLS_E_AGAIN) {
gnutlsRecordCheckDirection();
return false;
} else if(ret < 0) {
throw DL_ABORT_EX
(StringFormat(EX_SSL_INIT_FAILURE, gnutls_strerror(ret)).str());
}
if(_tlsContext->peerVerificationEnabled()) {
// verify peer
unsigned int status;
ret = gnutls_certificate_verify_peers2(sslSession, &status);
if(ret < 0) {
throw DL_ABORT_EX
(StringFormat("gnutls_certificate_verify_peer2() failed. Cause: %s",
gnutls_strerror(ret)).str());
}
if(status) {
std::string errors;
if(status & GNUTLS_CERT_INVALID) {
errors += " `not signed by known authorities or invalid'";
}
if(status & GNUTLS_CERT_REVOKED) {
errors += " `revoked by its CA'";
}
if(status & GNUTLS_CERT_SIGNER_NOT_FOUND) {
errors += " `issuer is not known'";
}
if(!errors.empty()) {
throw DL_ABORT_EX
(StringFormat(MSG_CERT_VERIFICATION_FAILED, errors.c_str()).str());
}
}
// certificate type: only X509 is allowed.
if(gnutls_certificate_type_get(sslSession) != GNUTLS_CRT_X509) {
throw DL_ABORT_EX("Certificate type is not X509.");
}
unsigned int peerCertsLength;
const gnutls_datum_t* peerCerts = gnutls_certificate_get_peers
(sslSession, &peerCertsLength);
if(!peerCerts) {
throw DL_ABORT_EX(MSG_NO_CERT_FOUND);
}
Time now;
for(unsigned int i = 0; i < peerCertsLength; ++i) {
gnutls_x509_crt_t cert;
ret = gnutls_x509_crt_init(&cert);
if(ret < 0) {
throw DL_ABORT_EX
(StringFormat("gnutls_x509_crt_init() failed. Cause: %s",
gnutls_strerror(ret)).str());
}
auto_delete<gnutls_x509_crt_t> certDeleter
(cert, gnutls_x509_crt_deinit);
ret = gnutls_x509_crt_import(cert, &peerCerts[i], GNUTLS_X509_FMT_DER);
if(ret < 0) {
throw DL_ABORT_EX
(StringFormat("gnutls_x509_crt_import() failed. Cause: %s",
gnutls_strerror(ret)).str());
}
if(i == 0) {
if(!gnutls_x509_crt_check_hostname(cert, hostname.c_str())) {
throw DL_ABORT_EX(MSG_HOSTNAME_NOT_MATCH);
}
}
time_t activationTime = gnutls_x509_crt_get_activation_time(cert);
if(activationTime == -1) {
throw DL_ABORT_EX("Could not get activation time from certificate.");
}
if(now.getTime() < activationTime) {
throw DL_ABORT_EX("Certificate is not activated yet.");
}
time_t expirationTime = gnutls_x509_crt_get_expiration_time(cert);
if(expirationTime == -1) {
throw DL_ABORT_EX("Could not get expiration time from certificate.");
}
if(expirationTime < now.getTime()) {
throw DL_ABORT_EX("Certificate has expired.");
}
}
}
peekBuf = new char[peekBufMax];
#endif // HAVE_LIBGNUTLS
secure = 2;
return true;
} else {
return true;
}
}
ssize_t SocketCore::writeData(const char* data, size_t len,
const std::string& host, uint16_t port)
{
_wantRead = false;
_wantWrite = false;
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, host.c_str(), uitos(port).c_str(), _protocolFamily,
_sockType, 0, 0);
if(s) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_SEND, gai_strerror(s)).str());
}
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
ssize_t r = -1;
for(rp = res; rp; rp = rp->ai_next) {
while((r = sendto(sockfd, data, len, 0, rp->ai_addr, rp->ai_addrlen)) == -1
&& A2_EINTR == SOCKET_ERRNO);
if(r == static_cast<ssize_t>(len)) {
break;
}
if(r == -1 && A2_WOULDBLOCK(SOCKET_ERRNO)) {
_wantWrite = true;
r = 0;
break;
}
}
if(r == -1) {
throw DL_ABORT_EX(StringFormat(EX_SOCKET_SEND, errorMsg()).str());
}
return r;
}
ssize_t SocketCore::readDataFrom(char* data, size_t len,
std::pair<std::string /* numerichost */,
uint16_t /* port */>& sender)
{
_wantRead = false;
_wantWrite = false;
struct sockaddr_storage sockaddr;
socklen_t sockaddrlen = sizeof(struct sockaddr_storage);
struct sockaddr* addrp = reinterpret_cast<struct sockaddr*>(&sockaddr);
ssize_t r;
while((r = recvfrom(sockfd, data, len, 0, addrp, &sockaddrlen)) == -1 &&
A2_EINTR == SOCKET_ERRNO);
if(r == -1) {
if(A2_WOULDBLOCK(SOCKET_ERRNO)) {
_wantRead = true;
r = 0;
} else {
throw DL_RETRY_EX(StringFormat(EX_SOCKET_RECV, errorMsg()).str());
}
} else {
sender = util::getNumericNameInfo(addrp, sockaddrlen);
}
return r;
}
std::string SocketCore::getSocketError() const
{
int error;
socklen_t optlen = sizeof(error);
if(getsockopt(sockfd, SOL_SOCKET, SO_ERROR, (a2_sockopt_t) &error, &optlen) == -1) {
throw DL_ABORT_EX(StringFormat("Failed to get socket error: %s",
errorMsg()).str());
}
if(error != 0) {
return errorMsg(error);
} else {
return "";
}
}
bool SocketCore::wantRead() const
{
return _wantRead;
}
bool SocketCore::wantWrite() const
{
return _wantWrite;
}
#ifdef HAVE_EPOLL
void SocketCore::useEpoll()
{
_pollMethod = SocketCore::POLL_METHOD_EPOLL;
}
#endif // HAVE_EPOLL
void SocketCore::useSelect()
{
_pollMethod = SocketCore::POLL_METHOD_SELECT;
}
void SocketCore::bindAddress(const std::string& iface)
{
std::vector<std::pair<struct sockaddr_storage, socklen_t> > bindAddrs;
getInterfaceAddress(bindAddrs, iface, _protocolFamily);
if(bindAddrs.empty()) {
throw DL_ABORT_EX
(StringFormat(MSG_INTERFACE_NOT_FOUND,
iface.c_str(), "not available").str());
} else {
_bindAddrs = bindAddrs;
for(std::vector<std::pair<struct sockaddr_storage, socklen_t> >::
const_iterator i = _bindAddrs.begin(), eoi = _bindAddrs.end();
i != eoi; ++i) {
char host[NI_MAXHOST];
int s;
s = getnameinfo(reinterpret_cast<const struct sockaddr*>(&(*i).first),
(*i).second,
host, NI_MAXHOST, 0, NI_MAXSERV,
NI_NUMERICHOST);
if(s == 0) {
if(LogFactory::getInstance()->debug()) {
LogFactory::getInstance()->debug("Sockets will bind to %s", host);
}
}
}
}
}
void getInterfaceAddress
(std::vector<std::pair<struct sockaddr_storage, socklen_t> >& ifAddrs,
const std::string& iface, int family, int aiFlags)
{
Logger* logger = LogFactory::getInstance();
if(logger->debug()) {
logger->debug("Finding interface %s", iface.c_str());
}
#ifdef HAVE_GETIFADDRS
// First find interface in interface addresses
struct ifaddrs* ifaddr = 0;
if(getifaddrs(&ifaddr) == -1) {
logger->info(MSG_INTERFACE_NOT_FOUND, iface.c_str(), errorMsg());
} else {
auto_delete<struct ifaddrs*> ifaddrDeleter(ifaddr, freeifaddrs);
for(struct ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) {
if(!ifa->ifa_addr) {
continue;
}
int iffamily = ifa->ifa_addr->sa_family;
if(family == AF_UNSPEC) {
if(iffamily != AF_INET && iffamily != AF_INET6) {
continue;
}
} else if(family == AF_INET) {
if(iffamily != AF_INET) {
continue;
}
} else if(family == AF_INET6) {
if(iffamily != AF_INET6) {
continue;
}
} else {
continue;
}
if(std::string(ifa->ifa_name) == iface) {
socklen_t bindAddrLen = iffamily == AF_INET?sizeof(struct sockaddr_in):
sizeof(struct sockaddr_in6);
struct sockaddr_storage bindAddr;
memset(&bindAddr, 0, sizeof(bindAddr));
memcpy(&bindAddr, ifa->ifa_addr, bindAddrLen);
ifAddrs.push_back(std::make_pair(bindAddr, bindAddrLen));
}
}
}
#endif // HAVE_GETIFADDRS
if(ifAddrs.empty()) {
struct addrinfo* res;
int s;
s = callGetaddrinfo(&res, iface.c_str(), 0, family, SOCK_STREAM, aiFlags,0);
if(s) {
logger->info(MSG_INTERFACE_NOT_FOUND, iface.c_str(), gai_strerror(s));
} else {
WSAAPI_AUTO_DELETE<struct addrinfo*> resDeleter(res, freeaddrinfo);
struct addrinfo* rp;
for(rp = res; rp; rp = rp->ai_next) {
socklen_t bindAddrLen = rp->ai_addrlen;
struct sockaddr_storage bindAddr;
memset(&bindAddr, 0, sizeof(bindAddr));
memcpy(&bindAddr, rp->ai_addr, rp->ai_addrlen);
// Try to bind socket with this address. If it fails, the
// address is not for this machine.
try {
SocketCore socket;
socket.bind
(reinterpret_cast<const struct sockaddr*>(&bindAddr), bindAddrLen);
ifAddrs.push_back(std::make_pair(bindAddr, bindAddrLen));
} catch(RecoverableException& e) {
continue;
}
}
}
}
}
namespace {
int defaultAIFlags = DEFAULT_AI_FLAGS;
int getDefaultAIFlags()
{
return defaultAIFlags;
}
}
void setDefaultAIFlags(int flags)
{
defaultAIFlags = flags;
}
int callGetaddrinfo
(struct addrinfo** resPtr, const char* host, const char* service, int family,
int sockType, int flags, int protocol)
{
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = sockType;
hints.ai_flags = getDefaultAIFlags();
hints.ai_flags |= flags;
hints.ai_protocol = protocol;
return getaddrinfo(host, service, &hints, resPtr);
}
} // namespace aria2