Xray-core/common/protocol/quic/sniff.go

299 lines
8.9 KiB
Go

package quic
import (
"context"
"crypto"
"crypto/aes"
"crypto/tls"
"encoding/binary"
"io"
"github.com/quic-go/quic-go/quicvarint"
"github.com/xtls/xray-core/common"
"github.com/xtls/xray-core/common/buf"
"github.com/xtls/xray-core/common/bytespool"
"github.com/xtls/xray-core/common/errors"
ptls "github.com/xtls/xray-core/common/protocol/tls"
"golang.org/x/crypto/hkdf"
)
type SniffHeader struct {
domain string
}
func (s SniffHeader) Protocol() string {
return "quic"
}
func (s SniffHeader) Domain() string {
return s.domain
}
const (
versionDraft29 uint32 = 0xff00001d
version1 uint32 = 0x1
)
var (
quicSaltOld = []byte{0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99}
quicSalt = []byte{0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a}
initialSuite = &CipherSuiteTLS13{
ID: tls.TLS_AES_128_GCM_SHA256,
KeyLen: 16,
AEAD: AEADAESGCMTLS13,
Hash: crypto.SHA256,
}
errNotQuic = errors.New("not quic")
errNotQuicInitial = errors.New("not initial packet")
)
func SniffQUIC(b []byte) (resultReturn *SniffHeader, errorReturn error) {
// In extremely rare cases, this sniffer may cause slice error
// and we set recover() here to prevent crash.
// TODO: Thoroughly fix this panic
defer func() {
if r := recover(); r != nil {
errors.LogError(context.Background(), "Failed to sniff QUIC: ", r)
resultReturn = nil
errorReturn = common.ErrNoClue
}
}()
// Crypto data separated across packets
cryptoLen := 0
cryptoData := bytespool.Alloc(int32(len(b)))
defer bytespool.Free(cryptoData)
// Parse QUIC packets
for len(b) > 0 {
buffer := buf.FromBytes(b)
typeByte, err := buffer.ReadByte()
if err != nil {
return nil, errNotQuic
}
isLongHeader := typeByte&0x80 > 0
if !isLongHeader || typeByte&0x40 == 0 {
return nil, errNotQuicInitial
}
vb, err := buffer.ReadBytes(4)
if err != nil {
return nil, errNotQuic
}
versionNumber := binary.BigEndian.Uint32(vb)
if versionNumber != 0 && typeByte&0x40 == 0 {
return nil, errNotQuic
} else if versionNumber != versionDraft29 && versionNumber != version1 {
return nil, errNotQuic
}
packetType := (typeByte & 0x30) >> 4
isQuicInitial := packetType == 0x0
var destConnID []byte
if l, err := buffer.ReadByte(); err != nil {
return nil, errNotQuic
} else if destConnID, err = buffer.ReadBytes(int32(l)); err != nil {
return nil, errNotQuic
}
if l, err := buffer.ReadByte(); err != nil {
return nil, errNotQuic
} else if common.Error2(buffer.ReadBytes(int32(l))) != nil {
return nil, errNotQuic
}
tokenLen, err := quicvarint.Read(buffer)
if err != nil || tokenLen > uint64(len(b)) {
return nil, errNotQuic
}
if _, err = buffer.ReadBytes(int32(tokenLen)); err != nil {
return nil, errNotQuic
}
packetLen, err := quicvarint.Read(buffer)
if err != nil {
return nil, errNotQuic
}
hdrLen := len(b) - int(buffer.Len())
if len(b) < hdrLen+int(packetLen) {
return nil, common.ErrNoClue // Not enough data to read as a QUIC packet. QUIC is UDP-based, so this is unlikely to happen.
}
restPayload := b[hdrLen+int(packetLen):]
if !isQuicInitial { // Skip this packet if it's not initial packet
b = restPayload
continue
}
origPNBytes := make([]byte, 4)
copy(origPNBytes, b[hdrLen:hdrLen+4])
var salt []byte
if versionNumber == version1 {
salt = quicSalt
} else {
salt = quicSaltOld
}
initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt)
secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size())
hpKey := hkdfExpandLabel(initialSuite.Hash, secret, []byte{}, "quic hp", initialSuite.KeyLen)
block, err := aes.NewCipher(hpKey)
if err != nil {
return nil, err
}
cache := buf.New()
defer cache.Release()
mask := cache.Extend(int32(block.BlockSize()))
block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16])
b[0] ^= mask[0] & 0xf
for i := range b[hdrLen : hdrLen+4] {
b[hdrLen+i] ^= mask[i+1]
}
packetNumberLength := b[0]&0x3 + 1
if packetNumberLength != 1 {
return nil, errNotQuicInitial
}
var packetNumber uint32
{
n, err := buffer.ReadByte()
if err != nil {
return nil, err
}
packetNumber = uint32(n)
}
extHdrLen := hdrLen + int(packetNumberLength)
copy(b[extHdrLen:hdrLen+4], origPNBytes[packetNumberLength:])
data := b[extHdrLen : int(packetLen)+hdrLen]
key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16)
iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12)
cipher := AEADAESGCMTLS13(key, iv)
nonce := cache.Extend(int32(cipher.NonceSize()))
binary.BigEndian.PutUint64(nonce[len(nonce)-8:], uint64(packetNumber))
decrypted, err := cipher.Open(b[extHdrLen:extHdrLen], nonce, data, b[:extHdrLen])
if err != nil {
return nil, err
}
buffer = buf.FromBytes(decrypted)
for i := 0; !buffer.IsEmpty(); i++ {
frameType := byte(0x0) // Default to PADDING frame
for frameType == 0x0 && !buffer.IsEmpty() {
frameType, _ = buffer.ReadByte()
}
switch frameType {
case 0x00: // PADDING frame
case 0x01: // PING frame
case 0x02, 0x03: // ACK frame
if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay
return nil, io.ErrUnexpectedEOF
}
ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count
if err != nil {
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range
return nil, io.ErrUnexpectedEOF
}
for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length
return nil, io.ErrUnexpectedEOF
}
}
if frameType == 0x03 {
if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count
return nil, io.ErrUnexpectedEOF
}
}
case 0x06: // CRYPTO frame, we will use this frame
offset, err := quicvarint.Read(buffer) // Field: Offset
if err != nil {
return nil, io.ErrUnexpectedEOF
}
length, err := quicvarint.Read(buffer) // Field: Length
if err != nil || length > uint64(buffer.Len()) {
return nil, io.ErrUnexpectedEOF
}
if cryptoLen < int(offset+length) {
cryptoLen = int(offset + length)
if len(cryptoData) < cryptoLen {
newCryptoData := bytespool.Alloc(int32(cryptoLen))
copy(newCryptoData, cryptoData)
bytespool.Free(cryptoData)
cryptoData = newCryptoData
}
}
if _, err := buffer.Read(cryptoData[offset : offset+length]); err != nil { // Field: Crypto Data
return nil, io.ErrUnexpectedEOF
}
case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet
if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type
return nil, io.ErrUnexpectedEOF
}
length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length
if err != nil {
return nil, io.ErrUnexpectedEOF
}
if _, err := buffer.ReadBytes(int32(length)); err != nil { // Field: Reason Phrase
return nil, io.ErrUnexpectedEOF
}
default:
// Only above frame types are permitted in initial packet.
// See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8
return nil, errNotQuicInitial
}
}
tlsHdr := &ptls.SniffHeader{}
err = ptls.ReadClientHello(cryptoData[:cryptoLen], tlsHdr)
if err != nil {
// The crypto data may have not been fully recovered in current packets,
// So we continue to sniff rest packets.
b = restPayload
continue
}
return &SniffHeader{domain: tlsHdr.Domain()}, nil
}
return nil, common.ErrNoClue
}
func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte {
b := make([]byte, 3, 3+6+len(label)+1+len(context))
binary.BigEndian.PutUint16(b, uint16(length))
b[2] = uint8(6 + len(label))
b = append(b, []byte("tls13 ")...)
b = append(b, []byte(label)...)
b = b[:3+6+len(label)+1]
b[3+6+len(label)] = uint8(len(context))
b = append(b, context...)
out := make([]byte, length)
n, err := hkdf.Expand(hash.New, secret, b).Read(out)
if err != nil || n != length {
panic("quic: HKDF-Expand-Label invocation failed unexpectedly")
}
return out
}