Xray-core/proxy/vless/encryption/client.go

204 lines
6.2 KiB
Go

package encryption
import (
"crypto/cipher"
"crypto/ecdh"
"crypto/mlkem"
"crypto/rand"
"io"
"net"
"sync"
"time"
"github.com/xtls/xray-core/common/crypto"
"github.com/xtls/xray-core/common/errors"
"github.com/xtls/xray-core/common/protocol"
"lukechampine.com/blake3"
)
type ClientInstance struct {
NfsPKeys []any
NfsPKeysBytes [][]byte
Hash32s [][32]byte
RelaysLength int
XorMode uint32
Seconds uint32
RWLock sync.RWMutex
Expire time.Time
PfsKey []byte
Ticket []byte
}
func (i *ClientInstance) Init(nfsPKeysBytes [][]byte, xorMode, seconds uint32) (err error) {
if i.NfsPKeys != nil {
err = errors.New("already initialized")
return
}
l := len(nfsPKeysBytes)
if l == 0 {
err = errors.New("empty nfsPKeysBytes")
return
}
i.NfsPKeys = make([]any, l)
i.NfsPKeysBytes = nfsPKeysBytes
i.Hash32s = make([][32]byte, l)
for j, k := range nfsPKeysBytes {
if len(k) == 32 {
if i.NfsPKeys[j], err = ecdh.X25519().NewPublicKey(k); err != nil {
return
}
i.RelaysLength += 32 + 32
} else {
if i.NfsPKeys[j], err = mlkem.NewEncapsulationKey768(k); err != nil {
return
}
i.RelaysLength += 1088 + 32
}
i.Hash32s[j] = blake3.Sum256(k)
}
i.RelaysLength -= 32
i.XorMode = xorMode
i.Seconds = seconds
return
}
func (i *ClientInstance) Handshake(conn net.Conn) (*CommonConn, error) {
if i.NfsPKeys == nil {
return nil, errors.New("uninitialized")
}
c := NewCommonConn(conn, protocol.HasAESGCMHardwareSupport)
ivAndRealysLength := 16 + i.RelaysLength
pfsKeyExchangeLength := 18 + 1184 + 32 + 16
paddingLength := int(crypto.RandBetween(100, 1000))
clientHello := make([]byte, ivAndRealysLength+pfsKeyExchangeLength+paddingLength)
iv := clientHello[:16]
rand.Read(iv)
relays := clientHello[16:ivAndRealysLength]
var nfsKey []byte
var lastCTR cipher.Stream
for j, k := range i.NfsPKeys {
var index = 32
if k, ok := k.(*ecdh.PublicKey); ok {
privateKey, _ := ecdh.X25519().GenerateKey(rand.Reader)
copy(relays, privateKey.PublicKey().Bytes())
var err error
nfsKey, err = privateKey.ECDH(k)
if err != nil {
return nil, err
}
}
if k, ok := k.(*mlkem.EncapsulationKey768); ok {
var ciphertext []byte
nfsKey, ciphertext = k.Encapsulate()
copy(relays, ciphertext)
index = 1088
}
if i.XorMode > 0 { // this xor can (others can't) be recovered by client's config, revealing an X25519 public key / ML-KEM-768 ciphertext, that's why "native" values
NewCTR(i.NfsPKeysBytes[j], iv).XORKeyStream(relays, relays[:index]) // make X25519 public key / ML-KEM-768 ciphertext distinguishable from random bytes
}
if lastCTR != nil {
lastCTR.XORKeyStream(relays, relays[:32]) // make this relay irreplaceable
}
if j == len(i.NfsPKeys)-1 {
break
}
lastCTR = NewCTR(nfsKey, iv)
lastCTR.XORKeyStream(relays[index:], i.Hash32s[j+1][:])
relays = relays[index+32:]
}
nfsAEAD := NewAEAD(iv, nfsKey, c.UseAES)
if i.Seconds > 0 {
i.RWLock.RLock()
if time.Now().Before(i.Expire) {
c.Client = i
c.UnitedKey = append(i.PfsKey, nfsKey...) // different unitedKey for each connection
nfsAEAD.Seal(clientHello[:ivAndRealysLength], nil, EncodeLength(32), nil)
nfsAEAD.Seal(clientHello[:ivAndRealysLength+18], nil, i.Ticket, nil)
i.RWLock.RUnlock()
c.PreWrite = clientHello[:ivAndRealysLength+18+32]
c.AEAD = NewAEAD(clientHello[ivAndRealysLength+18:ivAndRealysLength+18+32], c.UnitedKey, c.UseAES)
if i.XorMode == 2 {
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, iv), nil, len(c.PreWrite), 16)
}
return c, nil
}
i.RWLock.RUnlock()
}
pfsKeyExchange := clientHello[ivAndRealysLength : ivAndRealysLength+pfsKeyExchangeLength]
nfsAEAD.Seal(pfsKeyExchange[:0], nil, EncodeLength(pfsKeyExchangeLength-18), nil)
mlkem768DKey, _ := mlkem.GenerateKey768()
x25519SKey, _ := ecdh.X25519().GenerateKey(rand.Reader)
pfsPublicKey := append(mlkem768DKey.EncapsulationKey().Bytes(), x25519SKey.PublicKey().Bytes()...)
nfsAEAD.Seal(pfsKeyExchange[:18], nil, pfsPublicKey, nil)
padding := clientHello[ivAndRealysLength+pfsKeyExchangeLength:]
nfsAEAD.Seal(padding[:0], nil, EncodeLength(paddingLength-18), nil)
nfsAEAD.Seal(padding[:18], nil, padding[18:paddingLength-16], nil)
if _, err := conn.Write(clientHello); err != nil {
return nil, err
}
// padding can be sent in a fragmented way, to create variable traffic pattern, before inner VLESS flow takes control
encryptedPfsPublicKey := make([]byte, 1088+32+16)
if _, err := io.ReadFull(conn, encryptedPfsPublicKey); err != nil {
return nil, err
}
nfsAEAD.Open(encryptedPfsPublicKey[:0], MaxNonce, encryptedPfsPublicKey, nil)
mlkem768Key, err := mlkem768DKey.Decapsulate(encryptedPfsPublicKey[:1088])
if err != nil {
return nil, err
}
peerX25519PKey, err := ecdh.X25519().NewPublicKey(encryptedPfsPublicKey[1088 : 1088+32])
if err != nil {
return nil, err
}
x25519Key, err := x25519SKey.ECDH(peerX25519PKey)
if err != nil {
return nil, err
}
pfsKey := make([]byte, 32+32) // no more capacity
copy(pfsKey, mlkem768Key)
copy(pfsKey[32:], x25519Key)
c.UnitedKey = append(pfsKey, nfsKey...)
c.AEAD = NewAEAD(pfsPublicKey, c.UnitedKey, c.UseAES)
c.PeerAEAD = NewAEAD(encryptedPfsPublicKey[:1088+32], c.UnitedKey, c.UseAES)
encryptedTicket := make([]byte, 32)
if _, err := io.ReadFull(conn, encryptedTicket); err != nil {
return nil, err
}
if _, err := c.PeerAEAD.Open(encryptedTicket[:0], nil, encryptedTicket, nil); err != nil {
return nil, err
}
seconds := DecodeLength(encryptedTicket)
if i.Seconds > 0 && seconds > 0 {
i.RWLock.Lock()
i.Expire = time.Now().Add(time.Duration(seconds) * time.Second)
i.PfsKey = pfsKey
i.Ticket = encryptedTicket[:16]
i.RWLock.Unlock()
}
encryptedLength := make([]byte, 18)
if _, err := io.ReadFull(conn, encryptedLength); err != nil {
return nil, err
}
if _, err := c.PeerAEAD.Open(encryptedLength[:0], nil, encryptedLength, nil); err != nil {
return nil, err
}
length := DecodeLength(encryptedLength[:2])
c.PeerPadding = make([]byte, length) // important: allows server sends padding slowly, eliminating 1-RTT's traffic pattern
if i.XorMode == 2 {
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, iv), NewCTR(c.UnitedKey, encryptedTicket[:16]), 0, length)
}
return c, nil
}