Browse Source

QUIC sniffer: handle multiple initial packets (#3802)

* QUIC sniffer: handle multiple initial packets
Basically copied from Vigilans/v2ray-core@8f33db0

Co-Authored-By: Vigilans <vigilans@foxmail.com>

* Remove unnecessary file

---------

Co-authored-by: Vigilans <vigilans@foxmail.com>
pull/3810/head
风扇滑翔翼 2 months ago committed by GitHub
parent
commit
781aaee21f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 10
      app/dispatcher/default.go
  2. 15
      common/buf/buffer.go
  3. 344
      common/protocol/quic/sniff.go

10
app/dispatcher/default.go

@ -41,8 +41,14 @@ func (r *cachedReader) Cache(b *buf.Buffer) {
if !mb.IsEmpty() { if !mb.IsEmpty() {
r.cache, _ = buf.MergeMulti(r.cache, mb) r.cache, _ = buf.MergeMulti(r.cache, mb)
} }
b.Clear() cacheLen := r.cache.Len()
rawBytes := b.Extend(buf.Size) if cacheLen <= b.Cap() {
b.Clear()
} else {
b.Release()
*b = *buf.NewWithSize(cacheLen)
}
rawBytes := b.Extend(cacheLen)
n := r.cache.Copy(rawBytes) n := r.cache.Copy(rawBytes)
b.Resize(0, int32(n)) b.Resize(0, int32(n))
r.Unlock() r.Unlock()

15
common/buf/buffer.go

@ -207,6 +207,21 @@ func (b *Buffer) Len() int32 {
return b.end - b.start return b.end - b.start
} }
// Cap returns the capacity of the buffer content.
func (b *Buffer) Cap() int32 {
if b == nil {
return 0
}
return int32(len(b.v))
}
// NewWithSize creates a Buffer with 0 length and capacity with at least the given size.
func NewWithSize(size int32) *Buffer {
return &Buffer{
v: bytespool.Alloc(size),
}
}
// IsEmpty returns true if the buffer is empty. // IsEmpty returns true if the buffer is empty.
func (b *Buffer) IsEmpty() bool { func (b *Buffer) IsEmpty() bool {
return b.Len() == 0 return b.Len() == 0

344
common/protocol/quic/sniff.go

@ -47,206 +47,224 @@ var (
) )
func SniffQUIC(b []byte) (*SniffHeader, error) { func SniffQUIC(b []byte) (*SniffHeader, error) {
buffer := buf.FromBytes(b) // Crypto data separated across packets
typeByte, err := buffer.ReadByte() cryptoLen := 0
if err != nil { cryptoData := bytespool.Alloc(int32(len(b)))
return nil, errNotQuic defer bytespool.Free(cryptoData)
}
isLongHeader := typeByte&0x80 > 0
if !isLongHeader || typeByte&0x40 == 0 {
return nil, errNotQuicInitial
}
vb, err := buffer.ReadBytes(4) // Parse QUIC packets
if err != nil { for len(b) > 0 {
return nil, errNotQuic buffer := buf.FromBytes(b)
} typeByte, err := buffer.ReadByte()
if err != nil {
return nil, errNotQuic
}
versionNumber := binary.BigEndian.Uint32(vb) isLongHeader := typeByte&0x80 > 0
if !isLongHeader || typeByte&0x40 == 0 {
return nil, errNotQuicInitial
}
if versionNumber != 0 && typeByte&0x40 == 0 { vb, err := buffer.ReadBytes(4)
return nil, errNotQuic if err != nil {
} else if versionNumber != versionDraft29 && versionNumber != version1 { return nil, errNotQuic
return nil, errNotQuic }
}
if (typeByte&0x30)>>4 != 0x0 { versionNumber := binary.BigEndian.Uint32(vb)
return nil, errNotQuicInitial if versionNumber != 0 && typeByte&0x40 == 0 {
} return nil, errNotQuic
} else if versionNumber != versionDraft29 && versionNumber != version1 {
return nil, errNotQuic
}
var destConnID []byte packetType := (typeByte & 0x30) >> 4
if l, err := buffer.ReadByte(); err != nil { isQuicInitial := packetType == 0x0
return nil, errNotQuic
} else if destConnID, err = buffer.ReadBytes(int32(l)); err != nil {
return nil, errNotQuic
}
if l, err := buffer.ReadByte(); err != nil { var destConnID []byte
return nil, errNotQuic if l, err := buffer.ReadByte(); err != nil {
} else if common.Error2(buffer.ReadBytes(int32(l))) != nil { return nil, errNotQuic
return nil, errNotQuic } else if destConnID, err = buffer.ReadBytes(int32(l)); err != nil {
} return nil, errNotQuic
}
tokenLen, err := quicvarint.Read(buffer) if l, err := buffer.ReadByte(); err != nil {
if err != nil || tokenLen > uint64(len(b)) { return nil, errNotQuic
return nil, errNotQuic } else if common.Error2(buffer.ReadBytes(int32(l))) != nil {
} return nil, errNotQuic
}
if _, err = buffer.ReadBytes(int32(tokenLen)); err != nil { tokenLen, err := quicvarint.Read(buffer)
return nil, errNotQuic if err != nil || tokenLen > uint64(len(b)) {
} return nil, errNotQuic
}
packetLen, err := quicvarint.Read(buffer) if _, err = buffer.ReadBytes(int32(tokenLen)); err != nil {
if err != nil { return nil, errNotQuic
return nil, errNotQuic }
}
hdrLen := len(b) - int(buffer.Len()) packetLen, err := quicvarint.Read(buffer)
if err != nil {
return nil, errNotQuic
}
origPNBytes := make([]byte, 4) hdrLen := len(b) - int(buffer.Len())
copy(origPNBytes, b[hdrLen:hdrLen+4]) if len(b) < hdrLen+int(packetLen) {
return nil, common.ErrNoClue // Not enough data to read as a QUIC packet. QUIC is UDP-based, so this is unlikely to happen.
}
var salt []byte restPayload := b[hdrLen+int(packetLen):]
if versionNumber == version1 { if !isQuicInitial { // Skip this packet if it's not initial packet
salt = quicSalt b = restPayload
} else { continue
salt = quicSaltOld }
}
initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt)
secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size())
hpKey := hkdfExpandLabel(initialSuite.Hash, secret, []byte{}, "quic hp", initialSuite.KeyLen)
block, err := aes.NewCipher(hpKey)
if err != nil {
return nil, err
}
cache := buf.New() origPNBytes := make([]byte, 4)
defer cache.Release() copy(origPNBytes, b[hdrLen:hdrLen+4])
mask := cache.Extend(int32(block.BlockSize())) var salt []byte
block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16]) if versionNumber == version1 {
b[0] ^= mask[0] & 0xf salt = quicSalt
for i := range b[hdrLen : hdrLen+4] { } else {
b[hdrLen+i] ^= mask[i+1] salt = quicSaltOld
} }
packetNumberLength := b[0]&0x3 + 1 initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt)
if packetNumberLength != 1 { secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size())
return nil, errNotQuicInitial hpKey := hkdfExpandLabel(initialSuite.Hash, secret, []byte{}, "quic hp", initialSuite.KeyLen)
} block, err := aes.NewCipher(hpKey)
var packetNumber uint32
{
n, err := buffer.ReadByte()
if err != nil { if err != nil {
return nil, err return nil, err
} }
packetNumber = uint32(n)
}
if packetNumber != 0 && packetNumber != 1 { cache := buf.New()
return nil, errNotQuicInitial defer cache.Release()
}
extHdrLen := hdrLen + int(packetNumberLength) mask := cache.Extend(int32(block.BlockSize()))
copy(b[extHdrLen:hdrLen+4], origPNBytes[packetNumberLength:]) block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16])
data := b[extHdrLen : int(packetLen)+hdrLen] b[0] ^= mask[0] & 0xf
for i := range b[hdrLen : hdrLen+4] {
key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16) b[hdrLen+i] ^= mask[i+1]
iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12)
cipher := AEADAESGCMTLS13(key, iv)
nonce := cache.Extend(int32(cipher.NonceSize()))
binary.BigEndian.PutUint64(nonce[len(nonce)-8:], uint64(packetNumber))
decrypted, err := cipher.Open(b[extHdrLen:extHdrLen], nonce, data, b[:extHdrLen])
if err != nil {
return nil, err
}
buffer = buf.FromBytes(decrypted)
cryptoLen := uint(0)
cryptoData := bytespool.Alloc(buffer.Len())
defer bytespool.Free(cryptoData)
for i := 0; !buffer.IsEmpty(); i++ {
frameType := byte(0x0) // Default to PADDING frame
for frameType == 0x0 && !buffer.IsEmpty() {
frameType, _ = buffer.ReadByte()
} }
switch frameType { packetNumberLength := b[0]&0x3 + 1
case 0x00: // PADDING frame if packetNumberLength != 1 {
case 0x01: // PING frame return nil, errNotQuicInitial
case 0x02, 0x03: // ACK frame }
if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged var packetNumber uint32
return nil, io.ErrUnexpectedEOF {
} n, err := buffer.ReadByte()
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay
return nil, io.ErrUnexpectedEOF
}
ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count
if err != nil { if err != nil {
return nil, io.ErrUnexpectedEOF return nil, err
} }
if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range packetNumber = uint32(n)
return nil, io.ErrUnexpectedEOF }
extHdrLen := hdrLen + int(packetNumberLength)
copy(b[extHdrLen:hdrLen+4], origPNBytes[packetNumberLength:])
data := b[extHdrLen : int(packetLen)+hdrLen]
key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16)
iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12)
cipher := AEADAESGCMTLS13(key, iv)
nonce := cache.Extend(int32(cipher.NonceSize()))
binary.BigEndian.PutUint64(nonce[len(nonce)-8:], uint64(packetNumber))
decrypted, err := cipher.Open(b[extHdrLen:extHdrLen], nonce, data, b[:extHdrLen])
if err != nil {
return nil, err
}
buffer = buf.FromBytes(decrypted)
for i := 0; !buffer.IsEmpty(); i++ {
frameType := byte(0x0) // Default to PADDING frame
for frameType == 0x0 && !buffer.IsEmpty() {
frameType, _ = buffer.ReadByte()
} }
for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range switch frameType {
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap case 0x00: // PADDING frame
case 0x01: // PING frame
case 0x02, 0x03: // ACK frame
if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged
return nil, io.ErrUnexpectedEOF return nil, io.ErrUnexpectedEOF
} }
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay
return nil, io.ErrUnexpectedEOF return nil, io.ErrUnexpectedEOF
} }
} ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count
if frameType == 0x03 { if err != nil {
if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count
return nil, io.ErrUnexpectedEOF return nil, io.ErrUnexpectedEOF
} }
if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range
return nil, io.ErrUnexpectedEOF return nil, io.ErrUnexpectedEOF
} }
if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length
return nil, io.ErrUnexpectedEOF
}
}
if frameType == 0x03 {
if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count
return nil, io.ErrUnexpectedEOF
}
}
case 0x06: // CRYPTO frame, we will use this frame
offset, err := quicvarint.Read(buffer) // Field: Offset
if err != nil {
return nil, io.ErrUnexpectedEOF return nil, io.ErrUnexpectedEOF
} }
length, err := quicvarint.Read(buffer) // Field: Length
if err != nil || length > uint64(buffer.Len()) {
return nil, io.ErrUnexpectedEOF
}
if cryptoLen < int(offset+length) {
cryptoLen = int(offset + length)
if len(cryptoData) < cryptoLen {
newCryptoData := bytespool.Alloc(int32(cryptoLen))
copy(newCryptoData, cryptoData)
bytespool.Free(cryptoData)
cryptoData = newCryptoData
}
}
if _, err := buffer.Read(cryptoData[offset : offset+length]); err != nil { // Field: Crypto Data
return nil, io.ErrUnexpectedEOF
}
case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet
if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type
return nil, io.ErrUnexpectedEOF
}
length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length
if err != nil {
return nil, io.ErrUnexpectedEOF
}
if _, err := buffer.ReadBytes(int32(length)); err != nil { // Field: Reason Phrase
return nil, io.ErrUnexpectedEOF
}
default:
// Only above frame types are permitted in initial packet.
// See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8
return nil, errNotQuicInitial
} }
case 0x06: // CRYPTO frame, we will use this frame
offset, err := quicvarint.Read(buffer) // Field: Offset
if err != nil {
return nil, io.ErrUnexpectedEOF
}
length, err := quicvarint.Read(buffer) // Field: Length
if err != nil || length > uint64(buffer.Len()) {
return nil, io.ErrUnexpectedEOF
}
if cryptoLen < uint(offset+length) {
cryptoLen = uint(offset + length)
}
if _, err := buffer.Read(cryptoData[offset : offset+length]); err != nil { // Field: Crypto Data
return nil, io.ErrUnexpectedEOF
}
case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet
if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code
return nil, io.ErrUnexpectedEOF
}
if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type
return nil, io.ErrUnexpectedEOF
}
length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length
if err != nil {
return nil, io.ErrUnexpectedEOF
}
if _, err := buffer.ReadBytes(int32(length)); err != nil { // Field: Reason Phrase
return nil, io.ErrUnexpectedEOF
}
default:
// Only above frame types are permitted in initial packet.
// See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8
return nil, errNotQuicInitial
} }
}
tlsHdr := &ptls.SniffHeader{} tlsHdr := &ptls.SniffHeader{}
err = ptls.ReadClientHello(cryptoData[:cryptoLen], tlsHdr) err = ptls.ReadClientHello(cryptoData[:cryptoLen], tlsHdr)
if err != nil { if err != nil {
return nil, err // The crypto data may have not been fully recovered in current packets,
// So we continue to sniff rest packets.
b = restPayload
continue
}
return &SniffHeader{domain: tlsHdr.Domain()}, nil
} }
return &SniffHeader{domain: tlsHdr.Domain()}, nil return nil, common.ErrNoClue
} }
func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte { func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte {

Loading…
Cancel
Save