You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

201 lines
5.6 KiB

package router
import (
"context"
"math"
"sort"
"time"
"github.com/xtls/xray-core/app/observatory"
"github.com/xtls/xray-core/common"
"github.com/xtls/xray-core/common/dice"
"github.com/xtls/xray-core/core"
"github.com/xtls/xray-core/features/extension"
)
// LeastLoadStrategy represents a least load balancing strategy
type LeastLoadStrategy struct {
settings *StrategyLeastLoadConfig
costs *WeightManager
observer extension.Observatory
ctx context.Context
}
func (l *LeastLoadStrategy) GetPrincipleTarget(strings []string) []string {
var ret []string
nodes := l.pickOutbounds(strings)
for _, v := range nodes {
ret = append(ret, v.Tag)
}
return ret
}
// NewLeastLoadStrategy creates a new LeastLoadStrategy with settings
func NewLeastLoadStrategy(settings *StrategyLeastLoadConfig) *LeastLoadStrategy {
return &LeastLoadStrategy{
settings: settings,
costs: NewWeightManager(
settings.Costs, 1,
func(value, cost float64) float64 {
return value * math.Pow(cost, 0.5)
},
),
}
}
// node is a minimal copy of HealthCheckResult
// we don't use HealthCheckResult directly because
// it may change by health checker during routing
type node struct {
Tag string
CountAll int
CountFail int
RTTAverage time.Duration
RTTDeviation time.Duration
RTTDeviationCost time.Duration
}
func (l *LeastLoadStrategy) InjectContext(ctx context.Context) {
l.ctx = ctx
}
func (s *LeastLoadStrategy) PickOutbound(candidates []string) string {
selects := s.pickOutbounds(candidates)
count := len(selects)
if count == 0 {
// goes to fallbackTag
return ""
}
return selects[dice.Roll(count)].Tag
}
func (s *LeastLoadStrategy) pickOutbounds(candidates []string) []*node {
qualified := s.getNodes(candidates, time.Duration(s.settings.MaxRTT))
selects := s.selectLeastLoad(qualified)
return selects
}
// selectLeastLoad selects nodes according to Baselines and Expected Count.
//
// The strategy always improves network response speed, not matter which mode below is configured.
// But they can still have different priorities.
//
// 1. Bandwidth priority: no Baseline + Expected Count > 0.: selects `Expected Count` of nodes.
// (one if Expected Count <= 0)
//
// 2. Bandwidth priority advanced: Baselines + Expected Count > 0.
// Select `Expected Count` amount of nodes, and also those near them according to baselines.
// In other words, it selects according to different Baselines, until one of them matches
// the Expected Count, if no Baseline matches, Expected Count applied.
//
// 3. Speed priority: Baselines + `Expected Count <= 0`.
// go through all baselines until find selects, if not, select none. Used in combination
// with 'balancer.fallbackTag', it means: selects qualified nodes or use the fallback.
func (s *LeastLoadStrategy) selectLeastLoad(nodes []*node) []*node {
if len(nodes) == 0 {
newError("least load: no qualified outbound").AtInfo().WriteToLog()
return nil
}
expected := int(s.settings.Expected)
availableCount := len(nodes)
if expected > availableCount {
return nodes
}
if expected <= 0 {
expected = 1
}
if len(s.settings.Baselines) == 0 {
return nodes[:expected]
}
count := 0
// go through all base line until find expected selects
for _, b := range s.settings.Baselines {
baseline := time.Duration(b)
for i := count; i < availableCount; i++ {
if nodes[i].RTTDeviationCost >= baseline {
break
}
count = i + 1
}
// don't continue if find expected selects
if count >= expected {
newError("applied baseline: ", baseline).AtDebug().WriteToLog()
break
}
}
if s.settings.Expected > 0 && count < expected {
count = expected
}
return nodes[:count]
}
func (s *LeastLoadStrategy) getNodes(candidates []string, maxRTT time.Duration) []*node {
if s.observer == nil {
common.Must(core.RequireFeatures(s.ctx, func(observatory extension.Observatory) error {
s.observer = observatory
return nil
}))
}
observeResult, err := s.observer.GetObservation(s.ctx)
if err != nil {
newError("cannot get observation").Base(err).WriteToLog()
return make([]*node, 0)
}
results := observeResult.(*observatory.ObservationResult)
outboundlist := outboundList(candidates)
var ret []*node
for _, v := range results.Status {
if v.Alive && (v.Delay < maxRTT.Milliseconds() || maxRTT == 0) && outboundlist.contains(v.OutboundTag) {
record := &node{
Tag: v.OutboundTag,
CountAll: 1,
CountFail: 1,
RTTAverage: time.Duration(v.Delay) * time.Millisecond,
RTTDeviation: time.Duration(v.Delay) * time.Millisecond,
RTTDeviationCost: time.Duration(s.costs.Apply(v.OutboundTag, float64(time.Duration(v.Delay)*time.Millisecond))),
}
if v.HealthPing != nil {
record.RTTAverage = time.Duration(v.HealthPing.Average)
record.RTTDeviation = time.Duration(v.HealthPing.Deviation)
record.RTTDeviationCost = time.Duration(s.costs.Apply(v.OutboundTag, float64(v.HealthPing.Deviation)))
record.CountAll = int(v.HealthPing.All)
record.CountFail = int(v.HealthPing.Fail)
}
ret = append(ret, record)
}
}
leastloadSort(ret)
return ret
}
func leastloadSort(nodes []*node) {
sort.Slice(nodes, func(i, j int) bool {
left := nodes[i]
right := nodes[j]
if left.RTTDeviationCost != right.RTTDeviationCost {
return left.RTTDeviationCost < right.RTTDeviationCost
}
if left.RTTAverage != right.RTTAverage {
return left.RTTAverage < right.RTTAverage
}
if left.CountFail != right.CountFail {
return left.CountFail < right.CountFail
}
if left.CountAll != right.CountAll {
return left.CountAll > right.CountAll
}
return left.Tag < right.Tag
})
}