InternLM/internlm/utils/model_checkpoint.py

379 lines
14 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
import os
import time
from enum import Enum
from typing import Dict
import torch
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.trainer import TrainState
from internlm.solver.optimizer import HybridZeroOptimizer
from internlm.utils.common import get_current_device
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.storage_manager import (
get_fns,
get_storage_manager,
llm_load,
llm_save,
)
logger = get_logger(__file__)
quit_signal_handler = None
class CheckpointType(Enum):
NORMAL_CHECKPOINT = 1
SNAPSHOT_CHECKPOINT = 2
def get_model_topology(model):
"""
Returns:
{
'{name}': {'dim': int}
}
where name is the name of the module, and all parameters under this module are
concatenated along the dimension 'dim'.
"""
from flash_attn.modules.embedding import VocabParallelEmbedding
topos = {}
for name, module in model.named_modules():
# If it does not meet these conditions, it is shared between various tp/dp, and it is necessary to assert
# that they are consistent.
if isinstance(module, VocabParallelEmbedding):
topos[name] = {"dim": 0}
return topos
def save_model_checkpoint(folder, model):
"""
Save the model according to the relationship between tp and dp. The principle is that the data of each tp
will not be gathered and saved separately, which is equivalent to actual sharding. The saved weight is named
- folder
- model_tp{tp_rank}_pp{pp_rank}.pt
If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading.
Args:
folder: The folder to save the model
model: The model to be saved
"""
states = model.state_dict()
topo = get_model_topology(model)
if folder is not None:
dp_size = gpc.get_world_size(ParallelMode.DATA)
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
dp_rank = gpc.get_local_rank(ParallelMode.DATA)
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
# TODO In theory, we should also consider pp level, but since pp is generally a state across machines,
# even if pp is not considered, it will definitely not be written on the same machine.
should_save_rank_pair = set() # (tp_rank, dp_rank)
for i in range(tp_size):
should_save_rank_pair.add((i, i % dp_size))
if (tp_rank, dp_rank) in should_save_rank_pair:
fn = f"model_tp{tp_rank}_pp{pp_rank}.pt"
fp = os.path.join(folder, fn)
llm_save(fp, saved_obj=states)
topo_fn = f"topo_tp{tp_rank}_pp{pp_rank}.json"
topo_fp = os.path.join(folder, topo_fn)
llm_save(topo_fp, saved_obj=topo)
torch.distributed.barrier()
def load_model_checkpoint(folder, model):
"""
There should be weights with names similar to the following under the folder.
- folder
- model_tp{tp_rank}_pp{pp_rank}.pt
If the tp is inconsistent with the saved one in the future use, the weight needs to be converted before loading.
"""
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
fns = get_fns(folder)
max_pp, max_tp = 0, 0
for fn in fns:
if fn.startswith("model_t") and not fn.endswith(".md5"):
segements = os.path.splitext(fn)[0].split("_")
max_pp = max(max_pp, int(segements[-1][2:]))
max_tp = max(max_tp, int(segements[-2][2:]))
assert (
pp_size == max_pp + 1
), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines"
assert (
tp_size == max_tp + 1
), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism"
should_load_name = f"model_tp{tp_rank}_pp{pp_rank}.pt"
fp = os.path.join(folder, should_load_name)
states = llm_load(fp, map_location=get_current_device())
missing_k, unexpected_keys = model.load_state_dict(states, strict=False)
if len(missing_k) != 0:
logger.warning(f"Warning: missing keys {missing_k}")
if len(unexpected_keys) != 0:
logger.warning(f"Warning: unexpected keys {unexpected_keys}")
# avoid to cuda oom, Ref: https://discuss.pytorch.org/t/load-state-dict-causes-memory-leak/36189/11
del states
torch.cuda.empty_cache()
def save_optimizer_checkpoint(optim, state_path):
"""Store the state of the optimizer to the local file system or remote OSS.
Args:
optim (Optimizer)
state_path (str): The state loading path of optimizer.
"""
# TODO sanity check for optimizer type
zero_rank = gpc.get_local_rank(ParallelMode.ZERO1)
tp_rank = gpc.get_local_rank(ParallelMode.TENSOR)
pp_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
fp = f"optimizer_tp{tp_rank}_pp{pp_rank}_zo{zero_rank}.pt"
states = optim.state_dict()
if isinstance(optim, HybridZeroOptimizer):
if gpc.get_global_rank() < optim.zero_world_size * tp_size * pp_size:
llm_save(os.path.join(state_path, fp), states)
if "zero_devide_optim_plan" in states:
params_per_rank_id_dict = states.pop("zero_devide_optim_plan")
fp_meta = os.path.join(state_path, optim.rank_unique_id)
llm_save(fp_meta, params_per_rank_id_dict)
else:
llm_save(os.path.join(state_path, fp), states)
def save_checkpoint(folder, model, optimizer, scheduler, train_state: TrainState, model_config: Dict = None):
"""
Save checkpoint to the given folder path.
"""
start = time.time()
torch.distributed.barrier()
folder = os.path.join(folder, str(train_state.step_count))
logger.info(
f"Saving checkpoint to `{folder}` at batch count:{train_state.step_count} from rank:{gpc.get_global_rank()}..."
)
timer("save-model").start()
save_model_checkpoint(folder=folder, model=model)
timer("save-model").stop()
timer("save-optimizer").start()
save_optimizer_checkpoint(optim=optimizer, state_path=folder)
timer("save-optimizer").stop()
if gpc.is_rank_for_log():
scheduler_states = scheduler.state_dict()
llm_save(os.path.join(folder, "schedulder.pt"), saved_obj=scheduler_states)
sampler_state = train_state.batch_sampler.state_dict()
llm_save(os.path.join(folder, "sampler.pt"), saved_obj=sampler_state)
llm_save(os.path.join(folder, "context.pt"), saved_obj=train_state.state_dict())
if model_config is not None:
llm_save(os.path.join(folder, "model_config.pt"), saved_obj=model_config)
torch.distributed.barrier()
if gpc.is_rank_for_log():
timer.log(["save-model", "save-optimizer"], logger=logger)
logger.info(f"Step: {train_state.step_count}, rank 0 save ckpt use {time.time() - start:.3f} s")
def load_optimizer_checkpoint(folder, optim):
"""Load the optimizer state from the local file system or remote
object storage Service (OSS).
Args:
optim (Optimizer): optimizer
folder (str): The FS/OSS path where the optimizer will be stored.
"""
fns = get_fns(folder)
max_tp, max_pp, max_zero = 0, 0, 0
for fn in fns:
if fn.startswith("optimizer_") and not fn.endswith(".md5"):
_, tp, pp, zero = os.path.splitext(fn)[0].split("_")
max_zero = max(max_zero, int(zero[2:]))
max_tp = max(max_tp, int(tp[2:]))
max_pp = max(max_pp, int(pp[2:]))
zero_size = gpc.get_world_size(ParallelMode.ZERO1)
zero_rank = gpc.get_local_rank(ParallelMode.ZERO1)
tp_size = gpc.get_world_size(ParallelMode.TENSOR)
pp_size = gpc.get_world_size(ParallelMode.PIPELINE)
assert (
zero_size == max_zero + 1
), f"The weights are save for {max_zero+1} data parallel, while current has {zero_size} zero broadcast range."
assert (
pp_size == max_pp + 1
), f"The weights are save for {max_pp+1} pipelines, while current has {pp_size} pipelines"
assert (
tp_size == max_tp + 1
), f"The weights are save for {max_tp+1} parallelism, while current has {tp_size} tensor parallelism"
fp = f"optimizer_tp{gpc.get_local_rank(ParallelMode.TENSOR)}_"
fp += f"pp{gpc.get_local_rank(ParallelMode.PIPELINE)}_"
fp += f"zo{zero_rank}.pt"
states = llm_load(os.path.join(folder, fp), map_location=get_current_device())
if isinstance(optim, HybridZeroOptimizer):
fp_meta = os.path.join(folder, optim.rank_unique_id)
try:
zero_devide_optim_plan = llm_load(fp_meta)
states.update({"zero_devide_optim_plan": zero_devide_optim_plan})
except Exception as e:
logger.warning(
f"Read zero optimzer split file '{fp_meta}', for '{e}'"
f"Please check whether loading ckpts are saved with the HybridZeroOptimizer."
)
optim.load_state_dict(states)
del states
torch.cuda.empty_cache()
def load_sampler(ckpt_path: str, sampler):
sampler_states = llm_load(os.path.join(ckpt_path, "sampler.pt"))
sampler.load_state_dict(sampler_states)
if gpc.is_rank_for_log():
pstate = copy.deepcopy(sampler_states)
pstate.pop("indices")
pstate.pop("rng_state")
logger.info(f"reload sampler_states:{pstate}")
torch.cuda.empty_cache()
def load_context(ckpt_path: str, train_dl, train_state: TrainState):
context_stuffs = llm_load(os.path.join(ckpt_path, "context.pt"))
train_state.load_state_dict(context_stuffs, train_dl)
if gpc.is_rank_for_log():
logger.info(f"reload train_state:{train_state}")
torch.cuda.empty_cache()
def load_scheduler(ckpt_path: str, lr_scheduler, optimizer, learning_rate, train_state: TrainState):
scheduler_states = llm_load(os.path.join(ckpt_path, "schedulder.pt"))
if learning_rate != scheduler_states["base_lrs"][0] and gpc.is_rank_for_log():
logger.warning(
f"Using new learning rate {learning_rate} to replace old learn rate {scheduler_states['base_lrs'][0]}."
)
base_lrs = copy.deepcopy(scheduler_states["base_lrs"])
scheduler_states["base_lrs"] = [learning_rate] * len(scheduler_states["base_lrs"])
if "after_scheduler_dict" in scheduler_states:
scheduler_states["after_scheduler_dict"]["base_lrs"] = [learning_rate] * len(
scheduler_states["after_scheduler_dict"]["base_lrs"]
)
lr_scheduler.load_state_dict(scheduler_states)
lr_scheduler.last_epoch = train_state.step_count + 1
ratios = [learning_rate / lr for lr in base_lrs]
for idx, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = param_group["lr"] * ratios[idx]
torch.cuda.empty_cache()
if gpc.is_rank_for_log():
logger.info(f"reload load_scheduler:{lr_scheduler}")
class CheckpointSaveManager:
"""StorageManagerContext"""
def __init__(
self,
ckpt_config,
model,
optimizer,
lr_scheduler,
model_config,
) -> None:
"""
CheckpointSaveManager is used to decide when to store ckpt. If it is an asynchronous
upload mode, you must call wait_async_upload_finish at the end of the program to wait
for the asynchronous ckpt upload to complete.
Args:
ckpt_config (dict): model checkpoint config.
model (nn.module): model obj
optimizer (object): optimzier obj.
lr_scheduler (object): lr_scheduler obj.
model_config (dict): model config.
"""
self.enable_save_ckpt = ckpt_config.enable_save_ckpt
self.checkpoint_every = ckpt_config.checkpoint_every
self.save_ckpt_folder = ckpt_config.save_ckpt_folder
self.snapshot_ckpt_folder = ckpt_config.snapshot_ckpt_folder
self.oss_snapshot_freq: int = ckpt_config.oss_snapshot_freq
self.storage_manager = get_storage_manager()
self.snapshot_counter = 0
self.model = model
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.model_config = model_config
def try_save_checkpoint(self, train_state):
if not self.enable_save_ckpt:
return
save_ckpts, save_type = False, CheckpointType.NORMAL_CHECKPOINT
if self.oss_snapshot_freq > 1 and train_state.step_count % self.oss_snapshot_freq == 0:
save_ckpts, save_type = True, CheckpointType.SNAPSHOT_CHECKPOINT
if train_state.step_count % self.checkpoint_every == 0:
save_ckpts, save_type = True, CheckpointType.NORMAL_CHECKPOINT
if save_ckpts is False:
if quit_signal_handler is not None:
save_ckpts, save_type = quit_signal_handler(train_state)
if save_ckpts:
# Wait for the previous round of asynchronous upload storage to complete.
self.storage_manager.wait()
if save_type == CheckpointType.SNAPSHOT_CHECKPOINT:
# Snapshot number, with only two snapshots written alternately.
self.snapshot_counter = (self.snapshot_counter + 1) % 2
save_ckpt_folder = os.path.join(self.snapshot_ckpt_folder, f"{self.snapshot_counter}")
else:
save_ckpt_folder = self.save_ckpt_folder
save_checkpoint(
folder=save_ckpt_folder,
model=self.model,
optimizer=self.optimizer,
scheduler=self.lr_scheduler,
train_state=train_state,
model_config=self.model_config,
)
def wait_async_upload_finish(self):
"""wait for all checkpoint uploads to be completed"""
self.storage_manager.wait()
torch.distributed.barrier()