InternLM/internlm/solver/optimizer/hybrid_zero_optim.py

742 lines
30 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import torch
import torch.distributed as dist
from torch.optim import Optimizer
from internlm.core.context import Config, ParallelMode
from internlm.core.context import global_context as gpc
from internlm.monitor import send_alert_message
from internlm.solver.optimizer.store import (
BucketStore,
GradientStore,
ParameterStore,
TensorBucket,
)
from internlm.solver.optimizer.utils import (
DynamicGradScaler,
flatten,
get_grad_accumulate_object,
has_inf_or_nan,
reduce_tensor,
release_param_grad,
split_half_float_double,
sync_param,
)
from internlm.utils.common import get_current_device
from internlm.utils.logger import get_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from .utils import compute_norm
logger = get_logger(__file__)
class BaseOptimizer(Optimizer):
"""
Base Optimizer.
"""
def __init__(self, optim: Optimizer): # pylint: disable=W0231
self.optim = optim
@property
def param_groups(self):
return self.optim.param_groups
@property
def defaults(self):
return self.optim.defaults
def add_param_group(self, *args, **kwargs):
return self.optim.add_param_group(*args, **kwargs)
def step(self, *args, **kwargs):
return self.optim.step(*args, **kwargs)
def zero_grad(self, *args, **kwargs):
self.optim.zero_grad(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.optim.load_state_dict(*args, **kwargs)
def state_dict(self):
return self.optim.state_dict()
def backward(self, loss):
loss.backward()
def backward_by_grad(self, tensor, grad):
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
def clip_grad_norm(self):
pass
class HybridZeroOptimizer(BaseOptimizer):
"""
Hybrid Zero Optimizer.
"""
def __init__(
self,
optimizer: Optimizer,
cpu_offload=False,
overlap_broadcast=False,
grad_scal_cfg: Config = None,
zero_cfg: Config = None,
):
# DynamicGradScaler related args
if gpc.config.model.dtype is torch.float32:
initial_scale = 1
else:
initial_scale = grad_scal_cfg.fp16.initial_scale
min_scale = grad_scal_cfg.fp16.min_scale
growth_interval = grad_scal_cfg.fp16.growth_interval
growth_factor = grad_scal_cfg.growth_factor
backoff_factor = grad_scal_cfg.backoff_factor
hysteresis = grad_scal_cfg.hysteresis
max_scale = grad_scal_cfg.max_scale
# Zero related args
overlap_communication = zero_cfg.zero_overlap_communication
reduce_bucket_size = zero_cfg.reduce_bucket_size
clip_grad_norm = zero_cfg.clip_grad_norm
super().__init__(optim=optimizer)
self._dtype = self.optim.param_groups[0]["params"][0].dtype
self._cpu_offload = cpu_offload
self._zero_local_rank = gpc.get_local_rank(ParallelMode.ZERO1)
self._zero_world_size = gpc.get_world_size(ParallelMode.ZERO1)
self._broadcast_parallel_mode = ParallelMode.ZERO1
# ParameterStore will manage the tensor buffers used for zero
# it will not manage the tensors used by mixed precision training
self._param_store = ParameterStore(ParallelMode.ZERO1)
self._grad_store = GradientStore(ParallelMode.DATA)
self._bucket_store = BucketStore(ParallelMode.DATA)
# fp16 and fp32 params for mixed precision training
self._fp16_param_groups = dict()
self._fp32_flat_param_groups_of_current_rank = dict()
# communication params
self._overlap_communication = overlap_communication
self._reduce_bucket_size = reduce_bucket_size
# gradient scaler
self.grad_scaler = DynamicGradScaler(
initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale,
)
self._found_overflow = torch.cuda.FloatTensor([0], device=get_current_device())
# gradient clipping
self._clip_grad_norm = clip_grad_norm
# need to record the rank in which parameter groups are not assigned parameters.
self.param_group_has_params = []
self.param_group_no_params_ranks = []
self.padding_grad = torch.zeros([32], dtype=self._dtype, device=get_current_device())
self.padding_tensor = torch.zeros([32], dtype=self._dtype, device=get_current_device())
self.rank_unique_id = (
f"gpus-{gpc.get_world_size(ParallelMode.GLOBAL)}_"
+ f"pp-{gpc.get_local_rank(ParallelMode.PIPELINE)}_"
+ f"tp-{gpc.get_local_rank(ParallelMode.TENSOR)}_"
+ f"zo-{self._zero_local_rank}.pt"
)
self.params_per_rank_id_dict = []
self.overlap_broadcast = overlap_broadcast
# iterate over the param group in the optimizer
# partition these param groups for data parallel training
# and add buffers to parameter store for future access
for group_id, param_group in enumerate(self.optim.param_groups):
group_params = param_group["params"]
# add the fp16 params to fp16_param_groups for bookkeeping
self._fp16_param_groups[group_id] = group_params
# assign parameters to ranks the params in the list are sorted
params_per_rank, no_params_ranks = self._partition_param_list(group_params)
self.param_group_no_params_ranks.append(no_params_ranks)
self.param_group_has_params.append(self._zero_local_rank not in no_params_ranks)
# store the mapping between param to rank each param should belong to only one rank
for rank, params in enumerate(params_per_rank):
# check whether any rank is not assigned params.
if len(params) != 0:
self._param_store.add_fp16_param_list_by_rank_group(rank, group_id, params)
for param in params:
setattr(param, "group_id", group_id)
self._param_store.set_param_to_rank(param, rank)
# move to cpu to make room to create the flat tensor
for param in group_params:
param.data = param.data.cpu()
# flatten the reordered tensors
for rank in range(self._zero_world_size):
# No flat fp16 buffer is allocated if the process has no parameters.
if rank not in self.param_group_no_params_ranks[group_id]:
tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id)
with torch.no_grad():
flat_tensor = flatten(tensor_list)
flat_tensor = flat_tensor.data.cuda()
self._param_store.add_flat_fp16_param_by_rank_group(rank, group_id, flat_tensor)
sync_param(flat_tensor=flat_tensor, tensor_list=tensor_list)
# create a copy of fp32 weights of the parameters for which this rank is responsible
# No flat fp32 buffer is allocated if the process has no parameters.
if self.param_group_has_params[group_id]:
fp16_flat_current_rank = self._param_store.get_flat_fp16_param_by_rank_group(
self._zero_local_rank, group_id
)
fp32_flat_current_rank = fp16_flat_current_rank.float()
device = "cpu" if self._cpu_offload else get_current_device()
fp32_flat_current_rank = fp32_flat_current_rank.to(device)
fp32_flat_current_rank.requires_grad = True
self._fp32_flat_param_groups_of_current_rank[group_id] = fp32_flat_current_rank
# need to replace the params in the `params` field in the optimizer
# so that when the optimizer calls step(), it only updates the tensors
# managed by this data parallel rank
param_group["params"] = [fp32_flat_current_rank]
# set reduction state
for param in self._fp16_param_groups[group_id]:
self._param_store.set_param_reduction_state(param, False)
assert len(self._fp16_param_groups) != 0
# If a rank is not assigned any arguments, 'has_params' is False.
self.has_params = sum(self.param_group_has_params) != 0
# flag used to skip unnecessary gradient reduce operation when gradient accumulation is enabled.
self.skip_grad_reduce = False
# initialize communication stream for
# communication-computation overlapping
if self._overlap_communication:
self._comm_stream = torch.cuda.Stream()
# reduction hook is only used if overlapping communication
# if it is stage 1 without overlapping, no hook will be attached
if self._overlap_communication:
self._attach_reduction_hook()
@property
def zero_local_rank(self):
return self._zero_local_rank
@property
def zero_world_size(self):
return self._zero_world_size
@property
def dtype(self):
return self._dtype
@property
def loss_scale(self):
return self.grad_scaler.scale
@property
def num_param_groups(self):
return len(self._fp16_param_groups)
def _partition_param_list(self, param_list):
no_params_ranks = []
params_per_rank = [[] for _ in range(self._zero_world_size)]
numel_per_rank = [0 for _ in range(self._zero_world_size)]
self.params_per_rank_id_dict.append([[] for _ in range(self._zero_world_size)])
sorted_params = sorted(param_list, key=lambda x: x.numel(), reverse=True)
for i, param in enumerate(sorted_params):
global_id = str(i)
for j in range(len(param.size())):
global_id = "_".join([global_id, str(param.size()[j])])
rank_to_go = numel_per_rank.index(min(numel_per_rank))
params_per_rank[rank_to_go].append(param)
self.params_per_rank_id_dict[-1][rank_to_go].append(global_id)
numel_per_rank[rank_to_go] += param.numel()
# check whether any rank is not assigned to parameters.
for rank, params in enumerate(params_per_rank):
if len(params) == 0:
no_params_ranks.append(rank)
if gpc.is_rank_for_log():
logger.info(f"Number of elements on ranks: {numel_per_rank}, rank:{gpc.get_global_rank()}")
return params_per_rank, set(no_params_ranks)
def _attach_reduction_hook(self):
# we iterate over the fp16 params
# on each param, we register a hook to its AccumulateGrad object
for group_id in range(self.num_param_groups):
param_group = self._fp16_param_groups[group_id]
for param in param_group:
if param.requires_grad:
reduce_rank = None
def _define_and_attach(param, reduce_rank=None):
# get the AccumulateGrad object of the param itself
# If these objects are not kept, reduction hooks may not be attached successfully.
accum_grad_obj = get_grad_accumulate_object(param)
self._grad_store.add_accumulate_grad_object(accum_grad_obj)
reduction_func = partial(
self._store_and_try_reduce_grads_by_bucket, param=param, reduce_rank=reduce_rank
)
# define hook
# NOT IMPORTANT BUT GOOD TO KNOW:
# args here is not grad, but allow_unreacable and accumulate_grad
def reduce_grad_hook(*args): # pylint: disable=W0613
if self.skip_grad_reduce is False:
reduction_func()
accum_grad_obj.register_hook(reduce_grad_hook)
_define_and_attach(param, reduce_rank)
def _store_and_try_reduce_grads_by_bucket(self, param, reduce_rank=None):
param_size = param.numel()
# check if the bucket is full
# if full, will reduce the grads already in the bucket
# after reduction, the bucket will be empty
if self._bucket_store.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
self._reduce_grads_stored_in_bucket(reduce_rank, last_bucket=False)
# the param must not be reduced to ensure correctness
is_param_reduced = self._param_store.is_param_reduced(param)
if is_param_reduced:
msg = (
f"Parameter of size ({param.size()}) has already been reduced, "
+ "duplicate reduction will lead to arithmetic incorrectness"
)
raise RuntimeError(msg)
# the param must have grad for reduction
assert param.grad is not None, f"Parameter of size ({param.size()}) has None grad, cannot be reduced"
self._bucket_store.add_num_elements_in_bucket(param_size, reduce_rank)
self._bucket_store.add_grad(param.grad, reduce_rank)
self._bucket_store.add_param(param, reduce_rank)
def _reduce_grads_stored_in_bucket(self, reduce_rank=None, last_bucket=False):
# reduce grads
self._reduce_grads_by_rank(
reduce_rank=reduce_rank,
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank),
)
params_in_bucket = self._bucket_store.get_param(reduce_rank=reduce_rank)
for param in params_in_bucket:
# the is_param_reduced flag should be False showing that
# this param is not reduced before calling self._reduce_grads_by_rank
is_param_reduced = self._param_store.is_param_reduced(param)
if is_param_reduced:
msg = (
f"Parameter of size ({param.size()}) has been reduced, "
+ "duplicate reduction will lead to arithmetic incorrectness"
)
raise RuntimeError(msg)
# update the flag
self._param_store.set_param_reduction_state(param, True)
if self._param_store.belongs_to_current_rank(param):
self._param_store.add_reduced_param_for_compute_norm(param, last_bucket)
else:
self._param_store.add_previous_reduced_param(param)
self._bucket_store.reset_by_rank(reduce_rank)
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size):
grad_buckets_by_dtype = split_half_float_double(grads)
for tensor_list in grad_buckets_by_dtype:
param_bucket = TensorBucket(size=bucket_size)
for tensor in tensor_list:
param_bucket.add_to_bucket(tensor, allow_oversize=True)
if param_bucket.is_full_or_oversized():
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
param_bucket.empty()
if not param_bucket.is_empty():
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank):
if self._overlap_communication:
stream = self._comm_stream
stream.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
else:
stream = torch.cuda.current_stream()
with torch.cuda.stream(stream):
flat = bucket.flatten()
reduced_flat = reduce_tensor(
tensor=flat, dtype=self.dtype, dst_rank=reduce_rank, parallel_mode=ParallelMode.DATA
)
# update the reduced tensor
if reduce_rank is None or reduce_rank == self._zero_local_rank:
bucket.unflatten_and_copy(reduced_flat)
def _has_inf_or_nan(self, tensor):
try:
tensor_mean = float(tensor.mean())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if tensor_mean == float("inf") or tensor_mean == -float("inf"):
return True
return False
def _sync_grad(self):
# update param already reduced flag
reduction_states = self._param_store.get_param_reduction_states()
for tensor, _ in reduction_states.items():
reduction_states[tensor] = False
self._param_store.reset_reduced_data_for_compute_norm()
# accumulate gradient
avg_gradients = self._grad_store._averaged_gradients
for group_id in range(self.num_param_groups):
# the following operations are performed only on the rank to which parameters are assigned.
if self._zero_local_rank not in self.param_group_no_params_ranks[group_id]:
param_group = self._param_store.get_fp16_params_by_rank_group(self._zero_local_rank, group_id)
if group_id not in avg_gradients:
avg_gradients[group_id] = []
param_idx = 0
for param in param_group:
if param.grad is not None:
if len(avg_gradients[group_id]) == param_idx:
avg_gradients[group_id].append(param.grad)
else:
avg_gradients[group_id][param_idx].add_(param.grad)
param_idx += 1
# the gradients needed are stored in the avg_gradients buffer
# thus, can clear this
self.zero_grad()
def zero_grad(self, set_to_none=True):
"""
Set parameter gradients to zero. If set_to_none = True, gradient
will be set to None to save memory.
:param set_to_none: Whether set the gradient to None. Default value is True.
:type set_to_none: bool
"""
for _, param_group in self._fp16_param_groups.items():
for param in param_group:
if set_to_none:
param.grad = None
elif param.grad is not None:
param.grad.detach()
param.grad.zero_()
else:
pass
def backward(self, loss, retain_graph=False):
loss = self.loss_scale * loss
loss.backward(retain_graph=retain_graph)
# Gradients may not be fully synchronized here.
def _compute_norm_with_stage(
self,
group_id: int = 0,
last_bucket: bool = False,
last_stage: bool = False,
previous_norm=None,
):
# compute norm for gradients that have been reduced
params, grads = self._param_store.get_reduced_param_for_compute_norm(group_id=group_id, last_bucket=last_bucket)
if len(params) == 0:
grads = [self.padding_grad]
params = [self.padding_tensor]
if self._clip_grad_norm > 0:
# this norm is before scaling, it will be very large
norm = compute_norm(
gradients=grads,
parameters=params,
last_stage=last_stage,
previous_norm=previous_norm,
)
return norm
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
Returns:
Union[bool, float]: Whether the gradient is success updated, and the gradient.
"""
assert closure is None, "closure is not supported by step()"
# if not overlapping communication (no reduction hook is attached)
# we need to manually reduce these gradients
if not self._overlap_communication:
for group_id in range(len(self._fp16_param_groups)):
for param in self._fp16_param_groups[group_id]:
if param.grad is not None:
self._store_and_try_reduce_grads_by_bucket(param)
# we need to reduce the gradients left in the communication bucket
self._reduce_grads_stored_in_bucket(reduce_rank=None, last_bucket=True)
# compute norm for gradients in the before bucket
groups_norms = []
for group_id in range(self.num_param_groups):
groups_norms.append(self._compute_norm_with_stage(group_id=group_id))
# clear reduced grads
if self._overlap_communication:
# grads in the last bucket is reduced
self._comm_stream.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
# compute norm for gradients in the last bucket
total_norms = []
for group_id in range(self.num_param_groups):
total_norms.append(
self._compute_norm_with_stage(
group_id=group_id, last_bucket=True, last_stage=True, previous_norm=groups_norms[group_id]
)
)
timer("sync_grad").start()
self._sync_grad()
timer("sync_grad").stop()
return self._step(closure=closure, norms=total_norms)
def _step(self, closure=None, norms=None):
assert closure is None, "closure is not supported by step()"
# check for overflow
found_inf = False
# if there is INF values in grades, compute_norm func would also returns -1
# thus, we try to avoid call _check_overflow here
# found_inf = self._check_overflow()
# Because you may encounter inf when computing norm
if -1 in norms:
found_inf = True
loss_scale = float(self.loss_scale.item()) # backup
if gpc.config.model.dtype is not torch.float32:
self.grad_scaler.update(found_inf)
# update loss scale if overflow occurs
if found_inf:
if gpc.is_rank_for_log():
logger.warning("Overflow occurs, please check it.")
send_alert_message(address=gpc.config.alert_address, message="Overflow occurs, please check it.")
self._grad_store._averaged_gradients = dict()
self.zero_grad()
return False, None
# copy the grad of fp16 param to fp32 param
single_grad_partition_groups = []
for group_id in range(self.num_param_groups):
# compute norm
# The following operations are performed only on the rank to which parameters are assigned.
if not self.param_group_has_params[group_id]:
continue
# create flat gradient for the flat fp32 params
gradients = self._grad_store.get_averaged_gradients_by_group(group_id)
with torch.no_grad():
flat_fp16_avg_grads = flatten(gradients)
self._grad_store.reset_average_gradients_by_group(group_id)
gradients = None # release cuda memory
dtype = self._fp32_flat_param_groups_of_current_rank[group_id].dtype
flat_fp32_avg_grads = flat_fp16_avg_grads.to(dtype)
flat_fp16_avg_grads = None # release cuda memory
param_shape = self._fp32_flat_param_groups_of_current_rank[group_id].shape
assert (
param_shape == flat_fp32_avg_grads.shape
), f"fp32 param and grad have different shape {param_shape} vs {flat_fp32_avg_grads.shape}"
single_grad_partition_groups.append(flat_fp32_avg_grads)
device = self._fp32_flat_param_groups_of_current_rank[group_id].device
self._fp32_flat_param_groups_of_current_rank[group_id].grad = flat_fp32_avg_grads.to(device)
# unscale and clip grads
# get the global norm
global_norm_groups = []
if self._clip_grad_norm > 0:
for norm in norms:
global_norm_groups.append(norm**0.5)
# the following operations are performed only on the rank to which parameters are assigned.
if gpc.config.model.dtype is not torch.float32:
if len(single_grad_partition_groups) != 0:
self._unscale_and_clip_grads(single_grad_partition_groups, global_norm_groups, loss_scale)
# update the parameters
timer("step").start()
# For those ranks that are not assigned parameters, we just wait for other ranks
# to send them updated their own parameters.
if self.has_params:
self.optim.step()
# release the fp32 grad
release_param_grad(self._fp32_flat_param_groups_of_current_rank.values())
# update fp16 partition updated by the current rank
for group_id in range(len(self._fp16_param_groups)):
if self.param_group_has_params[group_id]:
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(
rank=self._zero_local_rank, group_id=group_id
)
fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id]
fp16_param.data.copy_(fp32_param)
# TODO: support broadcast overlap
self.broadcast_params(overlap=False)
timer("step").stop()
# update gradients may not be needed here, because the sync_params function is used in initialization,
# so synchronization is maintained
return True, [global_norm / loss_scale for global_norm in global_norm_groups]
def broadcast_params(self, overlap=False):
handles = []
for group_id in range(self.num_param_groups):
for rank in range(self._zero_world_size):
# The following operations are performed only on the rank to which parameters are assigned.
if rank not in self.param_group_no_params_ranks[group_id]:
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=rank, group_id=group_id)
# grank = gpc.get_ranks_in_group(group_type)[rank] # need to convert to the global rank
# assert grank == rank, f"{grank} == {rank}"
g_rank = gpc.get_ranks_in_group(self._broadcast_parallel_mode)[rank]
handle = dist.broadcast(
fp16_param, src=g_rank, group=gpc.get_group(ParallelMode.ZERO1), async_op=True
)
handles.append(handle)
if not overlap:
for handle in handles:
handle.wait()
else:
return handles
##################
# FP16 Utilities #
##################
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(0.0)
# check for overflow
for group_id in range(len(self._fp16_param_groups)):
# The following operations are performed only on the rank to which parameters are assigned.
if self._zero_local_rank not in self.param_group_no_params_ranks[group_id]:
for avg_grad in self._grad_store.get_averaged_gradients_by_group(group_id):
if avg_grad is not None and has_inf_or_nan(avg_grad):
self._found_overflow.fill_(1.0)
break
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=gpc.get_group(ParallelMode.GLOBAL))
return self._found_overflow.item() > 0
def _unscale_and_clip_grads(self, grad_groups_flat, total_norm_groups, loss_scale):
# compute combined scale factor for this group
combined_scale_groups = []
if self._clip_grad_norm > 0.0:
# norm is in fact norm*scale
for group_id, total_norm in enumerate(total_norm_groups):
combined_scale_groups.append(loss_scale)
clip = ((total_norm / loss_scale) + 1e-6) / self._clip_grad_norm
if clip > 1.0:
combined_scale_groups[group_id] = clip * loss_scale
for group_id, grad in enumerate(grad_groups_flat):
grad.data.mul_(1.0 / combined_scale_groups[group_id])
def clip_grad_norm(self, model, max_norm):
# will conduct in the step()
pass
def state_dict(self):
states = {}
grad_scaler = self.grad_scaler.state_dict()
states["grad_scaler"] = grad_scaler
optim_states = self.optim.state_dict()
states["base_optim_states"] = optim_states
flat_fp32_weights = {}
for group_id, param in self._fp32_flat_param_groups_of_current_rank.items():
if self._zero_local_rank not in self.param_group_no_params_ranks[group_id]:
assert param.grad is None
flat_fp32_weights[group_id] = param
states["flat_fp32_weights"] = flat_fp32_weights
states["zero_devide_optim_plan"] = self.params_per_rank_id_dict
return states
def load_state_dict(self, states):
# TODO: Need to take into account the change in the number of DP.
assert "grad_scaler" in states, "Not found grad_scaler state!"
grad_scaler = states["grad_scaler"]
self.grad_scaler.load_state_dict(grad_scaler)
optim_states = states["base_optim_states"]
self.optim.load_state_dict(optim_states)
# load fp32 model weight.
flat_fp32_weights = states["flat_fp32_weights"]
assert set(flat_fp32_weights.keys()) == set(self._fp32_flat_param_groups_of_current_rank)
for group_id, param in flat_fp32_weights.items():
if self._zero_local_rank not in self.param_group_no_params_ranks[group_id]:
self_param = self._fp32_flat_param_groups_of_current_rank[group_id]
assert (
self_param.shape == param.shape
), f"The loaded parameter shape is inconsistent, {self_param.shape} != {param.shape}"
self_param.data.copy_(param.data)
# Load the fp16 model weights.
for group_id in range(len(self._fp16_param_groups)):
if self._zero_local_rank not in self.param_group_no_params_ranks[group_id]:
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(
rank=self._zero_local_rank, group_id=group_id
)
fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id]
fp16_param.data.copy_(fp32_param)
if "zero_devide_optim_plan" in states:
self.params_per_rank_id_dict = states["zero_devide_optim_plan"]