mirror of https://github.com/InternLM/InternLM
195 lines
6.2 KiB
Python
195 lines
6.2 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import warnings
|
|
|
|
import numpy as np
|
|
from sentencepiece import SentencePieceProcessor
|
|
from termcolor import colored
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
model_path = os.path.join(current_dir, "V7.model")
|
|
tokenizer = SentencePieceProcessor(model_file=model_path)
|
|
|
|
|
|
def write_bin(context: str, path: str) -> None:
|
|
"""
|
|
Write bin file.
|
|
|
|
Args:
|
|
context (str): the context of raw file.
|
|
path (str): the path for output bin file.
|
|
|
|
Example:
|
|
>>> write_bin("今天天气晴朗适合出门散步", "out.bin") # the output file format is 'txt'
|
|
>>> out.bin
|
|
>>> {"tokens": [67577, 69095, 63010, 61770, 67783, 69301, 74732]}
|
|
"""
|
|
# encode the context into tokens, which is a list, eg. [67577, 69095, 63010, 61770, 67783, 69301, 74732]
|
|
tokens = tokenizer.encode(context)
|
|
# transfer the list into dic, key is str 'tokens', value is tokens.
|
|
# eg. {"tokens": [67577, 69095, 63010, 61770, 67783, 69301, 74732]}
|
|
data = dict(tokens=tokens)
|
|
# encode the data into bytes to save
|
|
saved_bin = str.encode(json.dumps(data) + "\n")
|
|
|
|
# write bytes into bin path
|
|
with open(path, "ab") as f:
|
|
f.write(saved_bin)
|
|
|
|
|
|
def prepare_meta(bin_file_path: str):
|
|
"""
|
|
Prepare metadata for the given bin file.
|
|
|
|
Args:
|
|
bin_file_path (str): the bin file path.
|
|
"""
|
|
meta = []
|
|
cur = 0
|
|
with open(bin_file_path, "rb") as f:
|
|
while True:
|
|
# read lines
|
|
line = f.readline()
|
|
# if line is empty, then break
|
|
if line == b"":
|
|
break
|
|
# obtain the token amount of each line
|
|
length = len(json.loads(line)["tokens"])
|
|
# meta is a list of tuple(cur, length)
|
|
# cur: the start index of each line
|
|
# length: the token amount of each line
|
|
meta.append((cur, length))
|
|
# update the cur to generate the meta information of next line
|
|
cur += len(line)
|
|
print(meta)
|
|
# define path of the generated meta file
|
|
meta_fp = bin_file_path + ".meta"
|
|
# save the generated meta information
|
|
with open(meta_fp, "wb") as f:
|
|
meta = np.array(meta, dtype=np.int32)
|
|
np.save(f, meta)
|
|
|
|
|
|
def txt2bin(txt_file_path: str, bin_file_path: str):
|
|
"""
|
|
Read content from txt file and write to bin file
|
|
|
|
Args:
|
|
txt_file_path (str): txt file path.
|
|
bin_file_path (str): output bin file path.
|
|
"""
|
|
# Check if the txt file exists
|
|
if not os.path.isfile(txt_file_path):
|
|
warnings.warn(colored(f"{txt_file_path} does not exist.", "red"))
|
|
return
|
|
|
|
try:
|
|
# Open the text file
|
|
with open(txt_file_path, "r") as txt_file:
|
|
for line in txt_file:
|
|
# Strip any leading/trailing whitespace
|
|
stripped_line = line.strip()
|
|
if stripped_line:
|
|
# Pass each line to the write_bin function
|
|
write_bin(stripped_line, bin_file_path)
|
|
|
|
print(colored(f"Successfully converted {txt_file_path} to {bin_file_path}", "green"))
|
|
|
|
except Exception as e:
|
|
print(colored(f"Error while converting {txt_file_path} to {bin_file_path}: {str(e)}", "red"))
|
|
|
|
|
|
def json2bin(json_file_path: str, bin_file_path: str):
|
|
"""
|
|
Read content from json file and write to bin file
|
|
|
|
Args:
|
|
json_file_path (str): json file path.
|
|
bin_file_path (str): output bin file path.
|
|
"""
|
|
|
|
if not os.path.isfile(json_file_path):
|
|
warnings.warn(colored(f"{json_file_path} does not exist.", "red"))
|
|
return
|
|
|
|
try:
|
|
# load json file
|
|
with open(json_file_path, "r") as json_file:
|
|
data = json.load(json_file)
|
|
# assuming data is a list of dictionaries
|
|
for record in data:
|
|
# the type of record is dict, transfer the dict into str
|
|
context = json.dumps(record)
|
|
# encode the str and write into bin
|
|
write_bin(context, bin_file_path)
|
|
|
|
print(colored(f"Successfully converted {json_file_path} to {bin_file_path}", "green"))
|
|
|
|
except Exception as e:
|
|
print(colored(f"Error while converting {json_file_path} to {bin_file_path}: {str(e)}", "red"))
|
|
|
|
|
|
def jsonl2bin(jsonl_file_path: str, bin_file_path: str):
|
|
"""
|
|
Read content from jsonl file and write to bin file
|
|
|
|
Args:
|
|
jsonl_file_path: jsonl file path.
|
|
bin_file_path: bin file path.
|
|
"""
|
|
|
|
if not os.path.isfile(jsonl_file_path):
|
|
warnings.warn(colored(f"{jsonl_file_path} does not exist.", "red"))
|
|
return
|
|
|
|
try:
|
|
with open(jsonl_file_path, "r") as jsonl_file:
|
|
for line in jsonl_file:
|
|
# encode the str and write into bin
|
|
write_bin(line, bin_file_path)
|
|
|
|
print(colored(f"Successfully converted {jsonl_file_path} to {bin_file_path}", "green"))
|
|
|
|
except Exception as e:
|
|
print(colored(f"Error while converting {jsonl_file_path} to {bin_file_path}: {str(e)}", "red"))
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--raw_data_name", required=True, help="Input file name")
|
|
parser.add_argument(
|
|
"--input_file_type",
|
|
choices=["txt", "json", "jsonl"],
|
|
required=True,
|
|
help="Input file format (either txt, json or jsonl)",
|
|
)
|
|
parser.add_argument("--bin", required=True, help="Path to the output bin file")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
# parse arguments
|
|
args = parse_args()
|
|
|
|
# obtain the raw data path
|
|
input_file_path = f"{args.raw_data_name}.{args.input_file_type}"
|
|
|
|
# different methods for different raw data type, we only support "txt", "json" and "jsonl" data type.
|
|
if args.input_file_type == "txt":
|
|
txt2bin(input_file_path, args.bin)
|
|
elif args.input_file_type == "json":
|
|
json2bin(input_file_path, args.bin)
|
|
elif args.input_file_type == "jsonl":
|
|
jsonl2bin(input_file_path, args.bin)
|
|
else:
|
|
print(colored("Invalid input file type. Use --help for more information.", "red"))
|
|
|
|
# To avoid potential read/write errors, the metadata preparation follows after creating the .bin file.
|
|
prepare_meta(args.bin)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|