InternLM/tests/test_model/test_moe.py

153 lines
4.6 KiB
Python

import multiprocessing as mp
import random
import numpy as np
import pytest
import torch
import internlm
from internlm.core.context.parallel_context import Config
from internlm.model.moe import MoE
config = Config(
dict(
parallel=dict(zero1=1, pipeline=dict(size=1, interleaved_overlap=False), sequence_parallel=False, tensor=2),
model_type="INTERNLM_MoE",
data=dict(seq_len=2048, micro_num=1, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
checkpoint=False,
num_attention_heads=2,
embed_split_hidden=True,
vocab_size=103168,
embed_grad_scale=1,
parallel_output=True,
hidden_size=1024,
num_layers=2,
mlp_ratio=1,
apply_post_layer_norm=False,
dtype=torch.bfloat16,
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1,
num_experts=4,
),
resume_tb_folder="",
tensorboard_folder="",
alert_address=None,
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
)
)
def build_environment(rank, world_size):
import os
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "8889"
torch.cuda.empty_cache()
# launcher="torch"
internlm.launch_from_torch(config=config, seed=1024)
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def check_moe(args):
# init
rank, world_size = args
build_environment(rank, world_size)
device = torch.cuda.current_device()
rtol, atol = (1e-3, 5e-3)
# fix seed
seed_all(1024)
# define moe block
moe_block = MoE(
hidden_size=8,
num_experts=4,
ep_size=4,
k=2,
device=device,
dtype=torch.bfloat16,
).to(device=device, dtype=torch.bfloat16)
# create input
hidden_states = torch.tensor(
[
[ 0.0080, 1.4003, -0.0911, 1.5041, -0.9852, 0.0073, 0.8122, 0.5846],
[-0.9325, 1.1439, 0.1247, 0.9126, -1.8346, -1.4484, -1.0012, -0.2540],
[ 1.0282, -0.7587, -1.4941, 0.0623, -2.6417, -0.6424, 0.1384, -0.8128],
[ 0.3021, -0.4711, 0.0220, 1.0690, -1.2214, -1.1801, 1.1554, -0.6620],
],
dtype=torch.bfloat16,
)
hidden_states = hidden_states.squeeze(0).to(device).requires_grad_()
# forward
result, moe_loss, _ = moe_block(hidden_states)
# check forward
standard_result = torch.tensor(
[
[-0.1143, -0.0064, -0.0269, 0.0374, -0.0854, 0.0294, 0.1895, 0.0200],
[-0.1650, -0.6523, 0.4199, 0.3574, 0.2227, -0.0957, -0.4121, 0.6055],
[-0.0214, -0.5508, 0.5977, -0.6406, -0.6562, -0.6172, 0.5117, 0.0664],
[ 0.3223, -0.0649, 0.2891, -0.1855, -0.2334, 0.5078, 0.3789, 0.4941],
],
dtype=torch.bfloat16,
).to(device)
# check output
assert torch.allclose(result, standard_result, rtol=rtol, atol=atol)
# backward
hidden_states.retain_grad()
loss = moe_loss + torch.randn_like(result)
result.backward(loss)
grad = hidden_states.grad
# check backward
standard_grad = torch.tensor(
[
[ 0.5898, -0.6758, 0.0021, 0.5469, -0.6172, -0.1289, 0.5234, -0.5391],
[ 0.2539, -0.6016, 0.0271, 0.7109, 0.1162, -0.5781, -0.4258, -0.5781],
[-1.7734, 0.5312, 1.7031, 0.3672, 1.0781, -1.2891, 0.5625, 1.1406],
[ 0.1328, -0.6250, 0.3945, 0.8633, -0.4805, -0.4023, 0.5039, -0.1914],
],
dtype=torch.bfloat16,
).to(device)
# check grad
assert torch.allclose(grad, standard_grad, rtol=rtol, atol=atol)
@pytest.mark.moe
def test_moe():
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(check_moe, [[rank, 8] for rank in range(8)])
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_moe.py"])