mirror of https://github.com/InternLM/InternLM
390 lines
16 KiB
Plaintext
390 lines
16 KiB
Plaintext
# SOME DESCRIPTIVE TITLE.
|
||
# Copyright (C) 2023, InternLM Team
|
||
# This file is distributed under the same license as the InternLM package.
|
||
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
|
||
#
|
||
#, fuzzy
|
||
msgid ""
|
||
msgstr ""
|
||
"Project-Id-Version: InternLM \n"
|
||
"Report-Msgid-Bugs-To: \n"
|
||
"POT-Creation-Date: 2023-09-27 10:59+0800\n"
|
||
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
|
||
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
|
||
"Language: en\n"
|
||
"Language-Team: en <LL@li.org>\n"
|
||
"Plural-Forms: nplurals=2; plural=(n != 1);\n"
|
||
"MIME-Version: 1.0\n"
|
||
"Content-Type: text/plain; charset=utf-8\n"
|
||
"Content-Transfer-Encoding: 8bit\n"
|
||
"Generated-By: Babel 2.12.1\n"
|
||
|
||
#: ../../../usage.md:2
|
||
msgid "使用教程"
|
||
msgstr "Quickstart Guide"
|
||
|
||
#: ../../../usage.md:4
|
||
msgid ""
|
||
"启动一个 Demo "
|
||
"模型训练,需要进行三项准备,**安装**,**数据集准备**和**模型训练配置**。接下来,首先会介绍数据准备相关的操作,再简要描述模型训练配置相关的内容。"
|
||
msgstr ""
|
||
"To start a demo model training, you need to prepare three things: "
|
||
"**installation**, **dataset preparation**, and **model training "
|
||
"configuration**. In this guide, we will first cover the steps for dataset"
|
||
" preparation and then briefly describe the model training configuration."
|
||
|
||
#: ../../../usage.md:6
|
||
msgid "安装"
|
||
msgstr "Installation"
|
||
|
||
#: ../../../usage.md:7
|
||
msgid "请参考[安装文档](./install.md)进行安装。"
|
||
msgstr ""
|
||
"Please refer to the [installation guide](./install.md) for instructions "
|
||
"on how to install the necessary dependencies."
|
||
|
||
#: ../../../usage.md:9
|
||
msgid "数据准备 (预训练)"
|
||
msgstr "Dataset Preparation (Pre-training)"
|
||
|
||
#: ../../../usage.md:11
|
||
msgid "InternLM训练任务的数据集包括一系列的`bin`和`meta`文件。使用`tokenizer`从原始文本文件生成训练用数据集。通过在`tools/tokenizer.py`中指定模型参数路径的方式来导入tokenizer模型。目前提供`V7_sft.model`来生成tokens。若想使用不同的模型,可直接修改`tokernizer.py`中的模型参数路径。"
|
||
msgstr ""
|
||
"The dataset for the InternLM training task includes a series of `bin` and"
|
||
" `meta` files. A `tokenizer` is used to generate the training dataset "
|
||
"from the original text files. The tokenizer model is imported by "
|
||
"specifying the model parameter path in `tools/tokenizer.py`. Currently, "
|
||
"`V7_sft.model` is provided to generate tokens. If you want to use a "
|
||
"different model, you can directly modify the model parameter path in "
|
||
"`tokenizer.py`."
|
||
|
||
#: ../../../usage.md:13
|
||
msgid "可以运行以下命令生成原始数据对应的`bin`和`meta`文件,其中参数`text_input_path`表示原始文本数据路径,目前支持`txt`、`json`和`jsonl`三种输入格式,`bin_output_path`表示生成的`bin`文件的保存路径。"
|
||
msgstr ""
|
||
"You can run the following command to generate `bin` and `meta` files "
|
||
"corresponding to the original data. The parameter `text_input_path` "
|
||
"represents the path of the original text data, currently supporting "
|
||
"`txt`, `json`, and `jsonl` formats, while `bin_output_path` represents "
|
||
"the save path of the generated `bin` files."
|
||
|
||
#: ../../../usage.md:18
|
||
msgid "下面是一个数据处理的例子:"
|
||
msgstr "Here is an example of data processing:"
|
||
|
||
#: ../../../usage.md:20
|
||
msgid "给定一个包含原始数据集的文件`raw_data.txt`,原始数据集如下所示:"
|
||
msgstr ""
|
||
"Given a file `raw_data.txt` containing the raw dataset, the raw dataset "
|
||
"is shown below:"
|
||
|
||
#: ../../../usage.md:27
|
||
msgid "可以通过运行以下命令来生成`bin`和`meta`文件:"
|
||
msgstr ""
|
||
"You can generate the `bin` and `meta` files by running the following "
|
||
"command:"
|
||
|
||
#: ../../../usage.md:32
|
||
msgid "需要注意的是,生成的`bin`文件需要保存在`cn`或者`en`或者`code`或者`ja`或者`ar`或者`kaoshi`这六个目录下,以区分数据集的类型。"
|
||
msgstr ""
|
||
"It should be noted that the generated `bin` files need to be saved in one"
|
||
" of the following directories: `cn`, `en`, `code`, `ja`, `ar`, or "
|
||
"`kaoshi`, depending on the type of dataset."
|
||
|
||
#: ../../../usage.md:34
|
||
msgid "其中,`cn`表示中文数据集;`en`表示英文数据集;`code`表示代码数据集;`ja`表示日语数据集;`ar`表示阿拉伯语数据集;`kaoshi`表示考试数据集。"
|
||
msgstr ""
|
||
"Here, `cn` represents the Chinese dataset, `en` represents the English "
|
||
"dataset, `code` represents the code dataset, `ja` represents the Japanese"
|
||
" dataset, `ar` represents the Arabic dataset, and `kaoshi` represents the"
|
||
" exam dataset."
|
||
|
||
#: ../../../usage.md:36
|
||
msgid "生成的bin文件的格式如下:"
|
||
msgstr "The format of the generated `bin` files is as follows:"
|
||
|
||
#: ../../../usage.md:42
|
||
msgid "`bin`文件中的每一行均对应原始数据集中的每一个句子,表示每个句子的`token`(下文将用sequence指定)。"
|
||
msgstr ""
|
||
"Each line in the `bin` file corresponds to each sentence in the original "
|
||
"dataset, representing the tokens of each sentence (referred to as "
|
||
"sequence below)."
|
||
|
||
#: ../../../usage.md:44
|
||
msgid "生成的`meta`文件的格式如下:"
|
||
msgstr "The format of the generated `meta` file is as follows:"
|
||
|
||
#: ../../../usage.md:48
|
||
msgid ""
|
||
"在`meta`文件中,每个元组对应着`bin`文件中每一个`sequence`的元信息。其中,元组的第一个元素表示每个`sequence`在所有`sequence`中的`starting"
|
||
" index`,第二个元素表示每个`sequence`中有多少个`tokens`。"
|
||
msgstr ""
|
||
"Each tuple in the `meta` file represents the meta information of each "
|
||
"`sequence`, where the first element in the tuple indicates the `starting "
|
||
"index` of each `sequence` among all `sequences`, and the second element "
|
||
"indicates the number of `tokens` for each `sequence`."
|
||
|
||
#: ../../../usage.md:50
|
||
msgid ""
|
||
"例如,对于第一个`sequence`,`starting index`为 0,有 11 "
|
||
"个`tokens`;对于第二个`sequence`,由于第一个`sequence`转换为`string`后的长度为`89`,因此它的`starting"
|
||
" index`为 90,有 15 个`tokens`。"
|
||
msgstr ""
|
||
"For example, the first `sequence` starts at index 0 and has 16 `tokens`. "
|
||
"The second `sequence` starts at index 110 and has 24 `tokens`."
|
||
|
||
#: ../../../usage.md:52
|
||
msgid "`json`和`jsonl`类型的文件的`bin`和`meta`文件格式和`txt`一致,此处不再赘叙。"
|
||
msgstr ""
|
||
"The `bin` and `meta` file formats for `json` and `jsonl` type files are "
|
||
"the same as for `txt`, so we won't go over them here."
|
||
|
||
#: ../../../usage.md:54
|
||
msgid "数据准备 (微调)"
|
||
msgstr "Data Preparation (Fine-tuning)"
|
||
|
||
#: ../../../usage.md:56
|
||
msgid ""
|
||
"微调任务的数据集格式与预训练任务保持一致,生成的数据格式为一系列的`bin`和`meta`文件。以下以 Alpaca "
|
||
"数据集为例,介绍微调的数据准备流程。"
|
||
msgstr ""
|
||
"The data format for fine-tuning tasks is the same as for pre-training "
|
||
"tasks, which consists of a series of `bin` and `meta` files. Let's take "
|
||
"the Alpaca dataset as an example to explain the data preparation process "
|
||
"for fine-tuning."
|
||
|
||
#: ../../../usage.md:58
|
||
msgid ""
|
||
"下载 [Alpaca 数据集](https://github.com/tatsu-"
|
||
"lab/stanford_alpaca/blob/main/alpaca_data.json)"
|
||
msgstr ""
|
||
"Download the [Alpaca dataset](https://github.com/tatsu-"
|
||
"lab/stanford_alpaca/blob/main/alpaca_data.json)."
|
||
|
||
#: ../../../usage.md:60
|
||
msgid "对 Alpaca 数据进行 tokenize,使用以下命令"
|
||
msgstr "Tokenize the Alpaca dataset using the following command:"
|
||
|
||
#: ../../../usage.md:66
|
||
msgid "建议用户参考 alpaca_tokenizer.py 编写新的脚本对自己的数据集进行 tokenize"
|
||
msgstr ""
|
||
"It is recommended that users refer to alpaca_tokenizer.py to write new "
|
||
"scripts to tokenize their own datasets"
|
||
|
||
#: ../../../usage.md:68
|
||
msgid "训练配置"
|
||
msgstr "Training Configuration"
|
||
|
||
#: ../../../usage.md:70
|
||
#, fuzzy
|
||
msgid "以 7B Demo 的配置文件`configs/7B_sft.py`为例:"
|
||
msgstr ""
|
||
"Taking the configuration file `configs/7B_sft.py` for the 7B demo as an "
|
||
"example,"
|
||
|
||
#: ../../../usage.md:237
|
||
msgid "接下来将详细介绍启动一个模型训练所需要进行的数据、模型、并行和监控等相关的配置。"
|
||
msgstr ""
|
||
"let's discuss the data, model, parallel and monitoring configurations "
|
||
"required to start a model training."
|
||
|
||
#: ../../../usage.md:239
|
||
msgid "数据配置"
|
||
msgstr "Data Configuration"
|
||
|
||
#: ../../../usage.md:240
|
||
msgid "数据相关的关键参数配置及释义如下所示:"
|
||
msgstr "Here are the key parameters and their explanations for data configuration:"
|
||
|
||
#: ../../../usage.md:255
|
||
msgid ""
|
||
msgstr ""
|
||
|
||
#: ../../../usage.md:255
|
||
msgid "pack_into_one"
|
||
msgstr ""
|
||
|
||
#: ../../../usage.md:258
|
||
msgid "目前支持传入数据集文件路径`train_folder`,且要求文件格式如下:"
|
||
msgstr ""
|
||
"Currently, it supports passing the dataset file path `train_folder`, and "
|
||
"the file format is required to be as follows:"
|
||
|
||
#: ../../../usage.md:265
|
||
msgid "数据集的详细内容可参考``数据准备``模块相关的介绍。"
|
||
msgstr ""
|
||
"For detailed information about the dataset, please refer to the \"Data "
|
||
"Preparation\" section."
|
||
|
||
#: ../../../usage.md:267
|
||
msgid "模型配置"
|
||
msgstr "Model Configuration"
|
||
|
||
#: ../../../usage.md:269
|
||
msgid "如果在启动训练时要加载模型 `checkpoint`,可进行如下相关配置:"
|
||
msgstr ""
|
||
"If you want to load a model checkpoint when starting the training, you "
|
||
"can configure it as follows:"
|
||
|
||
#: ../../../usage.md:282
|
||
msgid "注意:"
|
||
msgstr "Note:"
|
||
|
||
#: ../../../usage.md:283
|
||
msgid "路径若以 `local:` 为前缀,则存储在本地文件系统;若以 `boto3:` 为前缀,则存储在远程 oss 上"
|
||
msgstr ""
|
||
"If the path starts with `local:`, it means the file is stored in the "
|
||
"local file system. If it starts with `boto3:`, it means the file is "
|
||
"stored in the remote OSS."
|
||
|
||
#: ../../../usage.md:285
|
||
msgid "模型相关关键参数配置如下所示:"
|
||
msgstr "The configuration for the model is as follows:"
|
||
|
||
#: ../../../usage.md:309
|
||
msgid "注意:用户可自定义模型类型名和模型结构,并配置相对应的模型参数。通过`utils/registry.py`下的`MODEL_INITIALIZER`对象进行模型初始化函数接口注册,在训练主函数`train.py`中初始化模型时,可通过`model_type`配置获取指定的模型初始化接口函数。"
|
||
msgstr ""
|
||
"Note: Users can customize the model type name and model structure, and "
|
||
"configure the corresponding model parameters. The model initialization "
|
||
"function interface can be registered through the `MODEL_INITIALIZER` "
|
||
"object in `utils/registry.py`. When initializing the model in the "
|
||
"training main function `train.py`, the specified model initialization "
|
||
"interface function can be obtained through the `model_type` "
|
||
"configuration."
|
||
|
||
#: ../../../usage.md:311
|
||
msgid ""
|
||
"*如果基于 InternLM 7B继续训练,可以参考 "
|
||
"[ModelZoo](https://github.com/InternLM/InternLM/tree/main#model-zoo) 中 "
|
||
"OpenXLab 链接下载权重*"
|
||
msgstr ""
|
||
"*If you want to start training based on InternLM 7B, you can refer to "
|
||
"OpenXLab [ModelZoo](https://github.com/InternLM/InternLM/tree/main#model-"
|
||
"zoo) to download weights*."
|
||
|
||
#: ../../../usage.md:313
|
||
msgid "并行配置"
|
||
msgstr "Parallel Configuration"
|
||
|
||
#: ../../../usage.md:315
|
||
msgid "训练并行配置样例如下:"
|
||
msgstr "Training parallel configuration example:"
|
||
|
||
#: ../../../usage.md:324
|
||
msgid "zero1:zero 并行策略,分如下三种情况,默认值为 -1"
|
||
msgstr ""
|
||
"zero1: zero parallel strategy, divided into the following three cases, "
|
||
"default value is -1"
|
||
|
||
#: ../../../usage.md:325
|
||
msgid "当`zero1 <= 0`,则 zero1 进程组的大小等于数据并行进程组的大小,因此优化器状态参数将在数据并行范围内分配"
|
||
msgstr ""
|
||
"When `zero1 <= 0`, the size of the zero1 process group is equal to the "
|
||
"size of the data parallel process group, so the optimizer state "
|
||
"parameters will be split within the data parallel range."
|
||
|
||
#: ../../../usage.md:326
|
||
msgid "当`zero1 == 1`,则不使用 zero1 ,所有数据并行组保留完整的优化器状态参数"
|
||
msgstr ""
|
||
"When `zero1 == 1`, zero1 is not used, and all data parallel groups retain"
|
||
" the complete optimizer state parameters."
|
||
|
||
#: ../../../usage.md:327
|
||
msgid "当`zero1 > 1`且`zero1 <= data_parallel_world_size`,则 zero1 进程组是数据并行进程组的子集"
|
||
msgstr ""
|
||
"When `zero1 > 1` and `zero1 <= data_parallel_world_size`, the zero1 "
|
||
"process group is a subset of the data parallel process group."
|
||
|
||
#: ../../../usage.md:328
|
||
msgid "tensor:张量并行大小,通常是每个节点的 GPU 数量,默认值为 1"
|
||
msgstr ""
|
||
"tensor: tensor parallel size, usually the number of GPUs per node, "
|
||
"default is 1"
|
||
|
||
#: ../../../usage.md:329
|
||
msgid "pipeline:流水线并行策略"
|
||
msgstr "pipeline: pipeline parallel strategy"
|
||
|
||
#: ../../../usage.md:330
|
||
msgid "size:流水线并行大小,默认值为 1"
|
||
msgstr "size: pipeline parallel size, the default value is 1"
|
||
|
||
#: ../../../usage.md:331
|
||
msgid "interleaved_overlap:bool 类型,交错式调度时,开启或关闭通信优化,默认值为关闭"
|
||
msgstr ""
|
||
"interleaved_overlap: bool type, when interleaved scheduling, enable or "
|
||
"disable communication optimization, the default value is False"
|
||
|
||
#: ../../../usage.md:332
|
||
msgid "sequence_parallel:是否开启序列化并行,默认值为 False"
|
||
msgstr ""
|
||
"sequence_parallel: Whether to enable sequence parallelism, the default "
|
||
"value is False"
|
||
|
||
#: ../../../usage.md:334
|
||
msgid "注意:`数据并行大小 = 总的 GPU 数目 / 流水线并行大小 / 张量并行大小`"
|
||
msgstr ""
|
||
"Note: `Data parallel size = Total number of GPUs / Pipeline parallel size"
|
||
" / Tensor parallel size`"
|
||
|
||
#: ../../../usage.md:336
|
||
msgid "启动训练"
|
||
msgstr "Start Training"
|
||
|
||
#: ../../../usage.md:338
|
||
msgid "完成了以上数据集准备和相关训练配置后,可启动 Demo 训练。接下来分别以 slurm 和 torch 环境为例,介绍训练启动方式。"
|
||
msgstr ""
|
||
"After completing the data preparation and relevant training "
|
||
"configurations mentioned above, you can start the demo training. The "
|
||
"following examples demonstrate how to start the training in both slurm "
|
||
"and torch environments."
|
||
|
||
#: ../../../usage.md:340
|
||
msgid "若在 slurm 上启动分布式运行环境,多节点 16 卡的运行命令如下所示:"
|
||
msgstr ""
|
||
"If you want to start distributed training on slurm with 16 GPUs across "
|
||
"multiple nodes, use the following command:"
|
||
|
||
#: ../../../usage.md:345
|
||
msgid "若在 torch 上启动分布式运行环境,单节点 8 卡的运行命令如下所示:"
|
||
msgstr ""
|
||
"If you want to start distributed training on torch with 8 GPUs on a "
|
||
"single node, use the following command:"
|
||
|
||
#: ../../../usage.md:350
|
||
msgid "运行结果"
|
||
msgstr "Training Results"
|
||
|
||
#: ../../../usage.md:352
|
||
msgid "以 slurm 上单机 8 卡的 Demo 训练配置为例,训练结果日志展示如下:"
|
||
msgstr ""
|
||
"Taking the configuration of the demo training on a single machine with 8 "
|
||
"GPUs on slurm as an example, the training result log is shown below:"
|
||
|
||
#: ../../../usage.md:373
|
||
msgid "长文本生成"
|
||
msgstr ""
|
||
|
||
#: ../../../usage.md:375
|
||
msgid ""
|
||
"在推理阶段,您可以在模型配置中通过设置 `use_dynamic_ntk_rope=True` 开启 RoPE 的 Dynamic NTK "
|
||
"选项,从而使得模型适应长文本输入输出,达到 16K 的外推效果:"
|
||
msgstr ""
|
||
|
||
#: ../../../usage.md:401
|
||
msgid "关于 Dyanmic NTK 的原理,详细请参考"
|
||
msgstr ""
|
||
|
||
#: ../../../usage.md:403
|
||
msgid "https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases"
|
||
msgstr ""
|
||
|
||
#: ../../../usage.md:404
|
||
msgid "https://kexue.fm/archives/9675"
|
||
msgstr ""
|
||
|
||
#~ msgid "`load_model_only_folder`与`load_ckpt_folder`不能同时设置"
|
||
#~ msgstr ""
|
||
#~ "`load_model_only_folder` and `load_ckpt_folder` "
|
||
#~ "cannot be set at the same time."
|
||
|