InternLM/doc/code-docs/locales/en/LC_MESSAGES/mixed_precision.po

118 lines
5.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# SOME DESCRIPTIVE TITLE.
# Copyright (C) 2023, InternLM Team
# This file is distributed under the same license as the InternLM package.
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-27 10:59+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: en\n"
"Language-Team: en <LL@li.org>\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../source/mixed_precision.rst:2
msgid "混合精度"
msgstr "Mixed Precision"
#: ../../source/mixed_precision.rst:3
msgid ""
"混合精度是指在模型训练的过程中同时使用16位和32位浮点数类型是一种在最小化精度损失的前提下加速模型训练的方法。 "
"混合精度通过让模型的某些部分使用32位浮点数以保持数值稳定性并在其余部分利用半精度浮点数加速训练并可以减少内存使用在评估指标如准确率方面仍可以获得同等的训练效果。"
msgstr ""
"Mixed precision refers to using both 16-bit and 32-bit floating-point "
"types to train model, which can accelerate the model training while "
"minimizing the accuracy loss. Mixed precision training uses 32-bit "
"floating-point types in certain parts of the model to maintain numerical "
"stability, and accelerate training and reduce memory usage by using "
"16-bit floating-point types in other parts. Mixed precision can achieve "
"the same training effect in evaluating indicators such as accuracy."
#: internlm.core.naive_amp.NaiveAMPModel:1 of
msgid ""
"This is a wrapper class for a model that automatically casts the model, "
"its inputs, and outputs into fp16. It also provides options to cast the "
"output back to fp32 and to synchronize buffers."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel of
msgid "参数"
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:4 of
msgid "The model to be wrapped and cast into fp16."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:6 of
msgid "If True, the output of this module is cast into fp32. Defaults to True."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:8 of
msgid ""
"The parallel group mode used in this module. Defaults to "
"``ParallelMode.DATA``."
msgstr ""
#: internlm.core.naive_amp.NaiveAMPModel:11 of
msgid "If True, the buffers are synchronized. Defaults to True."
msgstr ""
#: ../../source/mixed_precision.rst:8
msgid "InternLM默认将模型转换为16位浮点数类型进行训练在配置文件中可以设置默认类型为其他数据类型。在使用混合精度时需要在构建模型时使用"
msgstr ""
"InternLM converts the model to 16-bit floating-point types for model "
"training by default (the default type can be set to other data types in "
"the configuration file). When using mixed precision, it is necessary to "
"use "
#: ../../source/mixed_precision.rst:14
msgid "将模型的某个子模块设置为32位浮点数类型进行训练InternLM会在模型训练时自动将数据类型转换成需要的精度。"
msgstr ""
"to set a sub-module of the model to 16-bit floating-point types for "
"training, and InternLM will automatically convert the data type to the "
"required precision during model training."
#: ../../source/mixed_precision.rst:16
msgid "例如:"
msgstr "For example:"
#: ../../source/mixed_precision.rst:40
msgid "TF32训练"
msgstr ""
#: ../../source/mixed_precision.rst:41
msgid "TensorFloat-32TF32是Nvidia在Ampere架构GPU上推出的专门运用于TensorCore的一种计算格式。其与其他常用数据格式的比较如下图"
msgstr "TensorFloat-32 (TF32) is a computational format introduced by Nvidia on Ampere Architecture GPUs for TensorCore. A comparison with other data formats is shown below."
#: ../../source/mixed_precision.rst:47
msgid "使用TF32的前置条件"
msgstr "Prerequisites for using TF32."
#: ../../source/mixed_precision.rst:49
msgid "输入数据类型为FP32且计算为矩阵乘法及卷积相关运算才可以使用TF32作为TensorCore的中间计算类型。"
msgstr "The input data type should be FP32 and TF32 is designed for matrix multiplication, convolutions, and other relative computations."
#: ../../source/mixed_precision.rst:51
msgid "Ampere架构的GPU。"
msgstr "Ampere Architecture GPU"
#: ../../source/mixed_precision.rst:53
msgid "InternLM支持使用TF32训练模型允许用户在config文件中将 ``dtype`` 设置为 ``torch.tf32``。"
msgstr "InternLM supports training model in TF32 and allows user to set the ``dtype`` in config as ``torch.tf32``."
#: ../../source/mixed_precision.rst:75
msgid ""
"值得注意的是TF32仅仅是在使用TensorCore时的一种中间计算格式并不是一个完全的数据类型。因此在InternLM中尽管用户将 "
"``dtype`` 设置成了 ``torch.tf32``,模型的数据类型依旧是 ``torch.float32``。InternLM会针对 "
"``dtype`` 为 ``torch.tf32`` 的情况设置以下变量来开启TF32训练。"
msgstr "It is noticed that TF32 is an intermediate format in TensorCore instead of a data type. Therefore, InternLM could set the following environment variables to enable TF32 when the ``dtype`` is ``torch.tf32``, which is actually ``torch.float32``."