mirror of https://github.com/InternLM/InternLM
335 lines
12 KiB
Python
335 lines
12 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
# adopted from https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context
|
|
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
|
# parallel modes
|
|
class ParallelMode(Enum):
|
|
"""This is an enumeration class containing all possible parallel modes."""
|
|
|
|
GLOBAL = "global"
|
|
|
|
# common parallel
|
|
DATA = "data"
|
|
|
|
# model parallel - containing tensor and pipeline parallel groups
|
|
# this is added to facilitate amp and grad clipping in hybrid parallel
|
|
MODEL = "model"
|
|
|
|
# pipeline parallel
|
|
PIPELINE = "pipe"
|
|
|
|
# containing all ranks in tensor parallel
|
|
TENSOR = "tensor"
|
|
|
|
# zero1 parallel
|
|
ZERO1 = "zero1"
|
|
|
|
|
|
class ProcessGroupInitializer(ABC):
|
|
"""An object, knowing the parallelism configuration, that initializes parallel groups.
|
|
|
|
Args:
|
|
rank (int): The rank of current process.
|
|
world_size (int): Size of whole communication world.
|
|
data_parallel_size (int): Size of data parallel.
|
|
pipeline_parallel_size (int): Size of pipeline parallel.
|
|
tensor_parallel_size (int): Size of tensor parallel.
|
|
zero1_parallel_size (int): Size of zero1 parallel.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
rank: int,
|
|
world_size: int,
|
|
data_parallel_size: int,
|
|
pipeline_parallel_size: int,
|
|
tensor_parallel_size: int,
|
|
zero1_parallel_size: int,
|
|
):
|
|
self.rank = rank
|
|
self.world_size = world_size
|
|
self.data_parallel_size = data_parallel_size
|
|
self.pipeline_parallel_size = pipeline_parallel_size
|
|
self.tensor_parallel_size = tensor_parallel_size
|
|
self.zero1_parallel_size = zero1_parallel_size
|
|
super().__init__()
|
|
|
|
@abstractmethod
|
|
def init_dist_group(self, use_cpu: bool = False):
|
|
pass
|
|
|
|
|
|
class Initializer_Data(ProcessGroupInitializer):
|
|
"""A ProcessGroupInitializer for data parallelism.
|
|
|
|
Args:
|
|
rank (int): The rank of current process.
|
|
world_size (int): Size of whole communication world.
|
|
data_parallel_size (int): Size of data parallel.
|
|
pipeline_parallel_size (int): Size of pipeline parallel.
|
|
tensor_parallel_size (int): Size of tensor parallel.
|
|
zero1_parallel_size (int): Size of zero1 parallel.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.rank_num_per_dp_group = self.world_size // self.data_parallel_size
|
|
|
|
assert self.world_size % self.data_parallel_size == 0
|
|
|
|
def init_dist_group(self, use_cpu: bool = False):
|
|
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
Returns:
|
|
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
|
A Data parallelism's information tuple.
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
cpu_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.DATA
|
|
|
|
for i in range(self.rank_num_per_dp_group):
|
|
ranks = [i + j * self.rank_num_per_dp_group for j in range(self.data_parallel_size)]
|
|
group = dist.new_group(ranks)
|
|
if use_cpu:
|
|
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
|
|
else:
|
|
group_cpu = None
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
cpu_group = group_cpu
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
|
|
|
|
|
class Initializer_Model(ProcessGroupInitializer):
|
|
"""A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel
|
|
groups).
|
|
|
|
Args:
|
|
rank (int): The rank of current process.
|
|
world_size (int): Size of whole communication world.
|
|
data_parallel_size (int): Size of data parallel.
|
|
pipeline_parallel_size (int): Size of pipeline parallel.
|
|
tensor_parallel_size (int): Size of tensor parallel.
|
|
zero1_parallel_size (int): Size of zero1 parallel.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.rank_num_per_group = self.tensor_parallel_size * self.pipeline_parallel_size
|
|
self.num_group = self.world_size // self.rank_num_per_group
|
|
|
|
assert self.world_size % self.rank_num_per_group == 0
|
|
|
|
def init_dist_group(self, use_cpu: bool = False):
|
|
"""Initialize model parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
Returns:
|
|
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
|
A Model parallelism's information tuple.
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
cpu_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.MODEL
|
|
|
|
for i in range(self.num_group):
|
|
ranks = [i * self.rank_num_per_group + j for j in range(self.rank_num_per_group)]
|
|
group = dist.new_group(ranks)
|
|
if use_cpu:
|
|
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
|
|
else:
|
|
group_cpu = None
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
cpu_group = group_cpu
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
|
|
|
|
|
class Initializer_Pipeline(ProcessGroupInitializer):
|
|
"""A ProcessGroupInitializer for pipeline parallelism.
|
|
|
|
Args:
|
|
rank (int): The rank of current process
|
|
world_size (int): Size of whole communication world
|
|
data_parallel_size (int): Size of data parallel
|
|
pipeline_parallel_size (int): Size of pipeline parallel
|
|
tensor_parallel_size (int): Size of tensor parallel
|
|
zero1_parallel_size (int): Size of zero1 parallel.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.rank_num_per_dp_group = self.world_size // self.data_parallel_size
|
|
self.pipeline_stage_size = self.rank_num_per_dp_group // self.pipeline_parallel_size
|
|
|
|
assert self.world_size % self.data_parallel_size == 0
|
|
assert self.rank_num_per_dp_group % self.pipeline_parallel_size == 0
|
|
|
|
def init_dist_group(self, use_cpu: bool = False):
|
|
"""Initialize pipeline parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
Returns:
|
|
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
|
|
A Pipeline parallelism's information in list of tuples.
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
cpu_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.PIPELINE
|
|
|
|
for i in range(self.data_parallel_size):
|
|
for j in range(self.pipeline_stage_size):
|
|
ranks = list(
|
|
range(
|
|
i * self.rank_num_per_dp_group + j,
|
|
(i + 1) * self.rank_num_per_dp_group,
|
|
self.pipeline_stage_size,
|
|
)
|
|
)
|
|
pipe_group_size = len(ranks)
|
|
pipe_group = dist.new_group(ranks)
|
|
if use_cpu:
|
|
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else pipe_group
|
|
else:
|
|
group_cpu = None
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = pipe_group_size
|
|
process_group = pipe_group
|
|
cpu_group = group_cpu
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
|
|
|
|
|
class Initializer_Tensor(ProcessGroupInitializer):
|
|
"""A ProcessGroupInitializer for tensor parallelism.
|
|
|
|
Args:
|
|
rank (int): The rank of current process.
|
|
world_size (int): Size of whole communication world.
|
|
data_parallel_size (int): Size of data parallel.
|
|
pipeline_parallel_size (int): Size of pipeline parallel.
|
|
tensor_parallel_size (int): Size of tensor parallel.
|
|
zero1_parallel_size (int): Size of zero1 parallel.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.num_tensor_parallel_group = self.world_size // self.tensor_parallel_size
|
|
|
|
assert self.world_size % self.tensor_parallel_size == 0
|
|
|
|
def init_dist_group(self, use_cpu: bool = False):
|
|
"""Initialize tensor parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
Returns:
|
|
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
|
A Tensor parallelism's information tuple.
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
cpu_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.TENSOR
|
|
|
|
for i in range(self.num_tensor_parallel_group):
|
|
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
|
|
group = dist.new_group(ranks)
|
|
if use_cpu:
|
|
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
|
|
else:
|
|
group_cpu = None
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
cpu_group = group_cpu
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
|
|
|
|
|
class Initializer_Zero1(ProcessGroupInitializer):
|
|
"""A ProcessGroupInitializer for zero-1 parallelism.
|
|
|
|
Args:
|
|
rank (int): The rank of current process.
|
|
world_size (int): Size of whole communication world.
|
|
data_parallel_size (int): Size of data parallel.
|
|
pipeline_parallel_size (int): Size of pipeline parallel.
|
|
tensor_parallel_size (int): Size of tensor parallel.
|
|
zero1_parallel_size (int): Size of zero-1 parallel.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.rank_num_per_dp_group = self.world_size // self.data_parallel_size
|
|
self.num_zero1_parallel_group = self.data_parallel_size // self.zero1_parallel_size
|
|
|
|
assert self.world_size % self.data_parallel_size == 0
|
|
assert self.world_size % self.zero1_parallel_size == 0
|
|
|
|
def init_dist_group(self, use_cpu: bool = False):
|
|
"""Initialize zero1 parallel groups, and assign local_ranks and groups to each gpu.
|
|
|
|
Returns:
|
|
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
|
|
A zero1 parallelism's information tuple.
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
cpu_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.ZERO1
|
|
|
|
for i in range(self.rank_num_per_dp_group):
|
|
for j in range(self.num_zero1_parallel_group):
|
|
ranks = [
|
|
i + (j * self.zero1_parallel_size + k) * self.rank_num_per_dp_group
|
|
for k in range(self.zero1_parallel_size)
|
|
]
|
|
group = dist.new_group(ranks)
|
|
if use_cpu:
|
|
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
|
|
else:
|
|
group_cpu = None
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
cpu_group = group_cpu
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|