InternLM/internlm/core/context/process_group_initializer.py

335 lines
12 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# adopted from https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context
from abc import ABC, abstractmethod
from enum import Enum
import torch.distributed as dist
# parallel modes
class ParallelMode(Enum):
"""This is an enumeration class containing all possible parallel modes."""
GLOBAL = "global"
# common parallel
DATA = "data"
# model parallel - containing tensor and pipeline parallel groups
# this is added to facilitate amp and grad clipping in hybrid parallel
MODEL = "model"
# pipeline parallel
PIPELINE = "pipe"
# containing all ranks in tensor parallel
TENSOR = "tensor"
# zero1 parallel
ZERO1 = "zero1"
class ProcessGroupInitializer(ABC):
"""An object, knowing the parallelism configuration, that initializes parallel groups.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
zero1_parallel_size (int): Size of zero1 parallel.
"""
def __init__(
self,
rank: int,
world_size: int,
data_parallel_size: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
zero1_parallel_size: int,
):
self.rank = rank
self.world_size = world_size
self.data_parallel_size = data_parallel_size
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
self.zero1_parallel_size = zero1_parallel_size
super().__init__()
@abstractmethod
def init_dist_group(self, use_cpu: bool = False):
pass
class Initializer_Data(ProcessGroupInitializer):
"""A ProcessGroupInitializer for data parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
zero1_parallel_size (int): Size of zero1 parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rank_num_per_dp_group = self.world_size // self.data_parallel_size
assert self.world_size % self.data_parallel_size == 0
def init_dist_group(self, use_cpu: bool = False):
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Data parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.DATA
for i in range(self.rank_num_per_dp_group):
ranks = [i + j * self.rank_num_per_dp_group for j in range(self.data_parallel_size)]
group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_Model(ProcessGroupInitializer):
"""A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel
groups).
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
zero1_parallel_size (int): Size of zero1 parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rank_num_per_group = self.tensor_parallel_size * self.pipeline_parallel_size
self.num_group = self.world_size // self.rank_num_per_group
assert self.world_size % self.rank_num_per_group == 0
def init_dist_group(self, use_cpu: bool = False):
"""Initialize model parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Model parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.MODEL
for i in range(self.num_group):
ranks = [i * self.rank_num_per_group + j for j in range(self.rank_num_per_group)]
group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_Pipeline(ProcessGroupInitializer):
"""A ProcessGroupInitializer for pipeline parallelism.
Args:
rank (int): The rank of current process
world_size (int): Size of whole communication world
data_parallel_size (int): Size of data parallel
pipeline_parallel_size (int): Size of pipeline parallel
tensor_parallel_size (int): Size of tensor parallel
zero1_parallel_size (int): Size of zero1 parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rank_num_per_dp_group = self.world_size // self.data_parallel_size
self.pipeline_stage_size = self.rank_num_per_dp_group // self.pipeline_parallel_size
assert self.world_size % self.data_parallel_size == 0
assert self.rank_num_per_dp_group % self.pipeline_parallel_size == 0
def init_dist_group(self, use_cpu: bool = False):
"""Initialize pipeline parallel groups, and assign local_ranks and groups to each gpu.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
A Pipeline parallelism's information in list of tuples.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PIPELINE
for i in range(self.data_parallel_size):
for j in range(self.pipeline_stage_size):
ranks = list(
range(
i * self.rank_num_per_dp_group + j,
(i + 1) * self.rank_num_per_dp_group,
self.pipeline_stage_size,
)
)
pipe_group_size = len(ranks)
pipe_group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else pipe_group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = pipe_group_size
process_group = pipe_group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_Tensor(ProcessGroupInitializer):
"""A ProcessGroupInitializer for tensor parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
zero1_parallel_size (int): Size of zero1 parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_tensor_parallel_group = self.world_size // self.tensor_parallel_size
assert self.world_size % self.tensor_parallel_size == 0
def init_dist_group(self, use_cpu: bool = False):
"""Initialize tensor parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Tensor parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.TENSOR
for i in range(self.num_tensor_parallel_group):
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_Zero1(ProcessGroupInitializer):
"""A ProcessGroupInitializer for zero-1 parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
zero1_parallel_size (int): Size of zero-1 parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rank_num_per_dp_group = self.world_size // self.data_parallel_size
self.num_zero1_parallel_group = self.data_parallel_size // self.zero1_parallel_size
assert self.world_size % self.data_parallel_size == 0
assert self.world_size % self.zero1_parallel_size == 0
def init_dist_group(self, use_cpu: bool = False):
"""Initialize zero1 parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A zero1 parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.ZERO1
for i in range(self.rank_num_per_dp_group):
for j in range(self.num_zero1_parallel_group):
ranks = [
i + (j * self.zero1_parallel_size + k) * self.rank_num_per_dp_group
for k in range(self.zero1_parallel_size)
]
group = dist.new_group(ranks)
if use_cpu:
group_cpu = dist.new_group(ranks, backend="gloo") if dist.get_backend() != "gloo" else group
else:
group_cpu = None
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode