mirror of https://github.com/InternLM/InternLM
165 lines
5.4 KiB
Python
165 lines
5.4 KiB
Python
JOB_NAME = "7b_train"
|
||
DO_ALERT = False
|
||
|
||
SEQ_LEN = 2048
|
||
HIDDEN_SIZE = 4096
|
||
NUM_ATTENTION_HEAD = 32
|
||
MLP_RATIO = 8 / 3
|
||
NUM_LAYER = 32
|
||
VOCAB_SIZE = 103168
|
||
|
||
MODEL_ONLY_FOLDER = "local:llm_ckpts/xxxx"
|
||
# Ckpt folder format:
|
||
# fs: 'local:/mnt/nfs/XXX'
|
||
SAVE_CKPT_FOLDER = "local:llm_ckpts"
|
||
LOAD_CKPT_FOLDER = "local:llm_ckpts/49"
|
||
|
||
# boto3 Ckpt folder format:
|
||
# import os
|
||
# BOTO3_IP = os.environ["BOTO3_IP"] # boto3 bucket endpoint
|
||
# SAVE_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm"
|
||
# LOAD_CKPT_FOLDER = f"boto3:s3://model_weights.{BOTO3_IP}/internlm/snapshot/1/"
|
||
CHECKPOINT_EVERY = 50
|
||
ckpt = dict(
|
||
enable_save_ckpt=False, # enable ckpt save.
|
||
save_ckpt_folder=SAVE_CKPT_FOLDER, # Path to save training ckpt.
|
||
# load_ckpt_folder= dict(path=MODEL_ONLY_FOLDER, content=["model"], ckpt_type="normal"),
|
||
load_ckpt_folder="local:llm_ckpts/",
|
||
# 'load_ckpt_info' setting guide:
|
||
# 1. the 'path' indicate ckpt path,
|
||
# 2. the 'content‘ means what states will be loaded, support: "model", "sampler", "optimizer", "scheduler", "all"
|
||
# 3. the ’ckpt_type‘ means the type of checkpoint to be loaded, now only 'normal' type is supported.
|
||
load_ckpt_info=dict(path=MODEL_ONLY_FOLDER, content=("model",), ckpt_type="internlm"),
|
||
checkpoint_every=CHECKPOINT_EVERY,
|
||
async_upload=True, # async ckpt upload. (only work for boto3 ckpt)
|
||
async_upload_tmp_folder="/dev/shm/internlm_tmp_ckpt/", # path for temporarily files during asynchronous upload.
|
||
oss_snapshot_freq=int(CHECKPOINT_EVERY / 2), # snapshot ckpt save frequency.
|
||
)
|
||
|
||
TRAIN_FOLDER = "/path/to/dataset"
|
||
VALID_FOLDER = "/path/to/dataset"
|
||
data = dict(
|
||
seq_len=SEQ_LEN,
|
||
# micro_num means the number of micro_batch contained in one gradient update
|
||
micro_num=4,
|
||
# packed_length = micro_bsz * SEQ_LEN
|
||
micro_bsz=2,
|
||
# defaults to the value of micro_num
|
||
valid_micro_num=4,
|
||
# defaults to 0, means disable evaluate
|
||
valid_every=50,
|
||
pack_sample_into_one=False,
|
||
total_steps=50000,
|
||
skip_batches="",
|
||
rampup_batch_size="",
|
||
# Datasets with less than 50 rows will be discarded
|
||
min_length=50,
|
||
# train_folder=TRAIN_FOLDER,
|
||
# valid_folder=VALID_FOLDER,
|
||
empty_cache_and_diag_interval=10,
|
||
diag_outlier_ratio=1.1,
|
||
)
|
||
|
||
grad_scaler = dict(
|
||
fp16=dict(
|
||
# the initial loss scale, defaults to 2**16
|
||
initial_scale=2**16,
|
||
# the minimum loss scale, defaults to None
|
||
min_scale=1,
|
||
# the number of steps to increase loss scale when no overflow occurs
|
||
growth_interval=1000,
|
||
),
|
||
# the multiplication factor for increasing loss scale, defaults to 2
|
||
growth_factor=2,
|
||
# the multiplication factor for decreasing loss scale, defaults to 0.5
|
||
backoff_factor=0.5,
|
||
# the maximum loss scale, defaults to None
|
||
max_scale=2**24,
|
||
# the number of overflows before decreasing loss scale, defaults to 2
|
||
hysteresis=2,
|
||
)
|
||
|
||
hybrid_zero_optimizer = dict(
|
||
# Enable low_level_optimzer overlap_communication
|
||
overlap_sync_grad=True,
|
||
overlap_sync_param=True,
|
||
# bucket size for nccl communication params
|
||
reduce_bucket_size=512 * 1024 * 1024,
|
||
# grad clipping
|
||
clip_grad_norm=1.0,
|
||
)
|
||
|
||
loss = dict(
|
||
label_smoothing=0,
|
||
)
|
||
|
||
adam = dict(
|
||
lr=1e-4,
|
||
adam_beta1=0.9,
|
||
adam_beta2=0.95,
|
||
adam_beta2_c=0,
|
||
adam_eps=1e-8,
|
||
weight_decay=0.01,
|
||
)
|
||
|
||
lr_scheduler = dict(
|
||
total_steps=data["total_steps"],
|
||
init_steps=0, # optimizer_warmup_step
|
||
warmup_ratio=0.01,
|
||
eta_min=1e-5,
|
||
last_epoch=-1,
|
||
)
|
||
|
||
beta2_scheduler = dict(
|
||
init_beta2=adam["adam_beta2"],
|
||
c=adam["adam_beta2_c"],
|
||
cur_iter=-1,
|
||
)
|
||
|
||
model = dict(
|
||
checkpoint=False, # The proportion of layers for activation aheckpointing, the optional value are True/False/[0-1]
|
||
num_attention_heads=NUM_ATTENTION_HEAD,
|
||
embed_split_hidden=True,
|
||
vocab_size=VOCAB_SIZE,
|
||
embed_grad_scale=1,
|
||
parallel_output=True,
|
||
hidden_size=HIDDEN_SIZE,
|
||
num_layers=NUM_LAYER,
|
||
mlp_ratio=MLP_RATIO,
|
||
apply_post_layer_norm=False,
|
||
dtype="torch.bfloat16", # Support: "torch.float16", "torch.half", "torch.bfloat16", "torch.float32", "torch.tf32"
|
||
norm_type="rmsnorm",
|
||
layer_norm_epsilon=1e-5,
|
||
use_flash_attn=True,
|
||
num_chunks=1, # if num_chunks > 1, interleaved pipeline scheduler is used.
|
||
)
|
||
"""
|
||
zero1 parallel:
|
||
1. if zero1 <= 0, The size of the zero process group is equal to the size of the dp process group,
|
||
so parameters will be divided within the range of dp.
|
||
2. if zero1 == 1, zero is not used, and all dp groups retain the full amount of model parameters.
|
||
3. zero1 > 1 and zero1 <= dp world size, the world size of zero is a subset of dp world size.
|
||
For smaller models, it is usually a better choice to split the parameters within nodes with a setting <= 8.
|
||
pipeline parallel (dict):
|
||
1. size: int, the size of pipeline parallel.
|
||
2. interleaved_overlap: bool, enable/disable communication overlap when using interleaved pipeline scheduler.
|
||
tensor parallel: tensor parallel size, usually the number of GPUs per node.
|
||
"""
|
||
parallel = dict(
|
||
zero1=8,
|
||
pipeline=dict(size=1, interleaved_overlap=True),
|
||
sequence_parallel=False,
|
||
)
|
||
|
||
cudnn_deterministic = False
|
||
cudnn_benchmark = False
|
||
|
||
monitor = dict(
|
||
# feishu alert configs
|
||
alert=dict(
|
||
enable_feishu_alert=DO_ALERT,
|
||
feishu_alert_address=None, # feishu webhook to send alert message
|
||
light_monitor_address=None, # light_monitor address to send heartbeat
|
||
),
|
||
)
|