InternLM/train.py

686 lines
24 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import socket
import time
import traceback
from functools import partial
from typing import Iterable
import numpy as np
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import DataLoader
import internlm
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.naive_amp import NaiveAMPModel
from internlm.core.scheduler import SchedulerMetricHook
from internlm.core.trainer import TrainState
from internlm.data.batch_sampler import StaticBatchSampler, get_dpsampler_dataloader
from internlm.data.collaters import jsonl_ds_collate_fn, packed_collate_fn
from internlm.data.dataset import get_dataset_dict
from internlm.data.dummy_dataset import RandomDataset
from internlm.data.packed_dataset import (
PackedDataset,
PackedDatasetWithoutCuSeqlen,
get_packed_dataset_without_short_length,
)
from internlm.data.utils import DATASET_TYPE_IDS_MAP, unpack_data
from internlm.model.loss import FlashGPTLMLoss
from internlm.model.metrics import AccPerplex
from internlm.monitor import initialize_monitor_manager, send_alert_message, set_env_var
from internlm.monitor.monitor import monitor_manager as mm
from internlm.solver.beta2_scheduler import Beta2Scheduler
from internlm.solver.lr_scheduler import FineTuneCosineAnnealingWarmupLR
from internlm.solver.optimizer import HybridZeroOptimizer
from internlm.utils.common import (
BatchSkipper,
DummyProfile,
get_master_node,
get_megatron_flops,
launch_time,
parse_args,
)
from internlm.utils.evaluation import evaluate_on_val_dls
from internlm.utils.logger import get_logger, initialize_uniscale_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.model_checkpoint import CheckpointManager
from internlm.utils.parallel import (
get_parallel_log_file_name,
is_no_pp_or_last_stage,
sync_model_param,
sync_model_param_within_tp,
)
from internlm.utils.registry import MODEL_INITIALIZER
from internlm.utils.simple_memory_profiler import SimpleMemoryProfiler
from internlm.utils.writer import Writer
# global llm logger
logger = get_logger(__file__)
def initialize_distributed_env(config: str, launcher: str = "slurm", master_port: int = 8888, seed: int = 1024):
"""
Initialize distributed environment for distributed training.
Args:
config (str): Config file path.
launcher (str): Launcher for launching distributed environment, can be slurm or torch. "slurm" by default.
master_port (str): The master port for distributed training. 8888 by default.
seed (int, optional): Specified random seed for every process. 1024 by default.
"""
torch.cuda.empty_cache()
if launcher == "torch":
internlm.launch_from_torch(config=config, seed=seed)
elif launcher == "slurm":
internlm.launch_from_slurm(
config=config,
host=get_master_node(),
port=master_port,
seed=seed,
)
else:
assert launcher in ["slurm", "torch"], "launcher only support slurm or torch"
def initialize_llm_logger(start_time: str):
"""
Initialize customed uniscale logger.
Args:
start_time (str): The launch time of current training job.
Returns: The instance of uniscale logger.
"""
uniscale_logger = initialize_uniscale_logger(
job_name=gpc.config.JOB_NAME, launch_time=start_time, file_name=get_parallel_log_file_name()
)
if uniscale_logger is not None:
global logger
logger = uniscale_logger
return uniscale_logger
def initialize_model():
"""
Initialize model.
Returns: The neural network model to be trained or evaluated.
"""
model = MODEL_INITIALIZER.get_module(module_name=gpc.config.model_type)(**(gpc.config.model))
if isinstance(model, nn.ModuleList):
model = nn.ModuleList(
[
NaiveAMPModel(
model=_m,
output_to_fp32=False, # manually controlled by interleaved pipleline scheduler
dtype=gpc.config.model.get("dtype", torch.half),
sync_buffer=False,
)
for _m in model
]
)
else:
model = NaiveAMPModel(
model=model,
output_to_fp32=is_no_pp_or_last_stage(),
dtype=gpc.config.model.get("dtype", torch.half),
sync_buffer=False,
)
# This sync is very important, cause the model weights kept in optimizer are copied
# from the origin parameters in the memory, so we should make sure the dp sync
# does not influence the model weights in optimizer be different with the origin parameters.
sync_model_param(model, parallel_mode=ParallelMode.DATA)
# This function is needed to make sure parameters that are not splitted by tensor parallelism are
# the same across tensor parallelism.
sync_model_param_within_tp(model)
return model
def get_train_data_loader(num_worker: int = 0):
"""
Generate and return the training data loader.
Returns: A tuple of (train_dl, dataset_types).
"""
# Get the dataset types
dataset_types = None
dataset_types = list(DATASET_TYPE_IDS_MAP.keys())
data_cfg = gpc.config.data
# Get the sample weight dictionary
train_folder = data_cfg.train_folder
if not train_folder:
train_ds = RandomDataset(num_samples=1000000, max_len=data_cfg.seq_len)
if data_cfg.pack_sample_into_one:
train_ds = PackedDatasetWithoutCuSeqlen(
train_ds, max_length_per_sample=data_cfg.seq_len, packed_length=data_cfg.packed_length
)
else:
train_ds = PackedDataset(
train_ds, max_length_per_sample=data_cfg.seq_len, packed_length=data_cfg.packed_length
)
else:
train_ds = get_packed_dataset_without_short_length(
folder=data_cfg.train_folder,
packed_length=data_cfg.packed_length,
max_length_per_sample=data_cfg.seq_len,
show_progress=dist.get_rank() == 0,
min_length=data_cfg.min_length,
min_length_dict=data_cfg.get("min_length_dict", {}),
pack_into_one_sample=data_cfg.pack_sample_into_one,
)
# partition already completed
# assert isinstance(train_ds, (PackedDataset, PackedDatasetWithoutCuSeqlen))
if isinstance(train_ds, (PackedDataset, PackedDatasetWithoutCuSeqlen)):
datasets = [train_ds]
else:
datasets = train_ds.datasets
# Create the training dataset sampler
train_sampler = StaticBatchSampler(
datasets,
batch_size=data_cfg.micro_num,
rampup_batch_size=data_cfg.rampup_batch_size,
micro_bsz=data_cfg.micro_bsz,
seed=1024,
drop_last=True,
data_rank=gpc.get_local_rank(ParallelMode.DATA),
data_world_size=gpc.get_world_size(ParallelMode.DATA),
)
train_collate_fn = partial(packed_collate_fn, packed_length=data_cfg.packed_length)
# Create the training data loader
train_dl = DataLoader(
dataset=train_ds,
batch_sampler=train_sampler,
num_workers=num_worker,
pin_memory=True,
collate_fn=train_collate_fn,
persistent_workers=True,
)
return train_dl, dataset_types
def get_validation_data_loader(num_worker: int = 0):
"""Generate and return the validation data loader."""
data_cfg = gpc.config.data
if not data_cfg.valid_folder:
val_ds = RandomDataset(num_samples=gpc.get_world_size(ParallelMode.DATA) * 500, max_len=data_cfg.seq_len)
else:
val_ds = get_dataset_dict(folder=data_cfg.valid_folder, split="")
if not isinstance(val_ds, dict):
val_ds = {"val": val_ds}
val_collate_fn = partial(jsonl_ds_collate_fn, max_length_per_sample=data_cfg.seq_len)
val_dls = {}
for val_name, ds in val_ds.items():
# making the batch_size of validate larger can speed up the evaluation, but it should not be too large,
# otherwise too much data may be dropped
batch_size = min(
data_cfg.valid_micro_num * data_cfg.micro_bsz, len(ds) // gpc.get_world_size(ParallelMode.DATA)
)
batch_size = batch_size // data_cfg.micro_bsz * data_cfg.micro_bsz
if batch_size == 0 and gpc.is_rank_for_log():
logger.info(f"skip validate {val_name}.")
continue
val_dls[val_name] = get_dpsampler_dataloader(
ds, shuffle=False, num_workers=num_worker, batch_size=batch_size, collate_fn=val_collate_fn, drop_last=True
) # drop_last=True, otherwise it may cause problems in the last batch
if gpc.is_rank_for_log():
logger.info(
f"load validation dataset {val_name} with valid batch size {str(batch_size)} and "
f"samples {str(len(val_dls[val_name]))}."
)
return val_dls
def load_new_batch(train_dl: DataLoader, train_iter: Iterable, train_state: TrainState):
"""
Load and return the new batch data based on training data loader.
Args:
train_dl (torch.utils.data.DataLoader): Dataloader for training.
train_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader).
train_state (TrainState): Current training state.
Returns: A batch data and the updated train_iter.
"""
timer("batch-gen").start()
try:
batch = next(train_iter) # structure is ({'input_ids': Tensor, 'cu_seqlens': Tensor}, Tensor)
next(train_state.batch_sampler_iter)
except StopIteration:
train_iter = iter(train_dl)
batch = next(train_iter)
train_state.batch_sampler_iter = iter(train_state.batch_sampler)
next(train_state.batch_sampler_iter)
train_state.num_consumed_samples_in_epoch = 0
timer("batch-gen").stop()
if batch[0].get("type_ids", None) is not None:
# if use_flash_attn is False, we need to unpack type_ids
if not gpc.config.model.use_flash_attn:
batch[0]["type_ids"] = unpack_data(batch[0]["type_ids"], batch[0]["cu_seqlens"])
return batch, train_iter
def initialize_optimizer(model: nn.Module):
"""
Initialize optimizer.
Args:
model (torch.nn.Module): Your model instance to be trained or evaluated.
Returns: A tuple of (optimizer, beta2_scheduler, lr_scheduler).
"""
adam_cfg = gpc.config.adam
naive_optimizer = torch.optim.AdamW(
params=[{"params": model.parameters(), "weight_decay": adam_cfg.weight_decay}],
lr=adam_cfg.lr,
betas=(adam_cfg.adam_beta1, adam_cfg.adam_beta2),
eps=adam_cfg.adam_eps,
)
optimizer = HybridZeroOptimizer(
naive_optimizer, grad_scal_cfg=gpc.config.grad_scaler, zero_cfg=gpc.config.hybrid_zero_optimizer
)
beta2_scheduler = Beta2Scheduler(optimizer=naive_optimizer, **gpc.config.beta2_scheduler)
lr_scheduler = FineTuneCosineAnnealingWarmupLR(optimizer, **gpc.config.lr_scheduler)
return optimizer, beta2_scheduler, lr_scheduler
def initialize_llm_profile(profiling: bool = False, start_time: str = None):
"""Initialize and return the profiler context manager instance."""
if profiling and gpc.get_local_rank(ParallelMode.DATA) == 0 and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
llm_profile = torch.profiler.profile
logger.info(f"Do profiling in rank {gpc.get_global_rank()}!")
else:
llm_profile = DummyProfile
return llm_profile(
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
schedule=torch.profiler.schedule(skip_first=5, wait=1, warmup=1, active=1, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(
f"{gpc.config.JOB_NAME}/{start_time}/traces/rank{gpc.get_global_rank()}_"
+ f"dp{gpc.get_local_rank(ParallelMode.DATA)}_"
+ f"tp{gpc.get_local_rank(ParallelMode.TENSOR)}_"
+ f"pp{gpc.get_local_rank(ParallelMode.PIPELINE)}",
),
with_stack=True,
with_modules=True,
)
def record_current_batch_training_metrics(
get_tflops_func,
logger,
writer,
success_update,
batch_count,
batch,
train_state,
optimizer,
beta2_scheduler,
trainer,
start_time,
loss,
grad_norm,
metric,
update_panel,
):
"""
Print some training metrics of current batch.
"""
set_env_var(key="LAST_ACTIVE_TIMESTAMP", value=int(time.time()))
if success_update in (0, True):
train_state.num_consumed_tokens += batch[1].nelement() * gpc.get_world_size(ParallelMode.DATA)
if is_no_pp_or_last_stage():
acc_perplex = metric.get_metric()
if success_update and gpc.is_rank_for_log():
lr = optimizer.param_groups[0]["lr"]
if hasattr(trainer.engine.optimizer, "grad_scaler"):
scaler = trainer.engine.optimizer.grad_scaler._scale.item()
elif hasattr(trainer.engine.optimizer.optim, "grad_scaler"):
scaler = trainer.engine.optimizer.optim.grad_scaler._scale.item()
num_tokens_in_batch = batch[1].nelement()
num_samples_in_batch = sum([len(b) - 1 for b in batch[0]["cu_seqlens"]])
max_length_in_batch = max([(b[1:] - b[:-1]).max().item() for b in batch[0]["cu_seqlens"]])
max_samples_in_batch = max([len(b) - 1 for b in batch[0]["cu_seqlens"]])
min_samples_in_batch = min([len(b) - 1 for b in batch[0]["cu_seqlens"]])
tk_per_gpu = 0
tk_per_gpu = round(
num_tokens_in_batch
* gpc.get_world_size(ParallelMode.DATA)
/ gpc.get_world_size(ParallelMode.GLOBAL)
/ (time.time() - start_time),
2,
)
tflops = get_tflops_func((time.time() - start_time))
infos = {
"tflops": tflops,
"step": batch_count,
"loss": loss.item(),
"tgs (tokens/gpu/second)": tk_per_gpu,
"lr": lr,
"loss_scale": scaler,
"grad_norm": grad_norm,
}
infos["micro_num"] = len(batch[1])
infos["num_consumed_tokens"] = train_state.num_consumed_tokens
infos["inf_nan_skip_batches"] = train_state.inf_nan_skip_batches
infos["num_samples_in_batch"] = num_samples_in_batch # the number of batches which have the most samples
infos["largest_length"] = max_length_in_batch # the longest input
infos["largest_batch"] = max_samples_in_batch # the batch with the most samples
infos["smallest_batch"] = min_samples_in_batch
infos["adam_beta2"] = beta2_scheduler.get_beta2()
fwd_bwd_time = round(timer("fwd-bwd").elapsed(), 2)
infos["fwd_bwd_time"] = fwd_bwd_time
for key, value in acc_perplex.items():
infos[key] = value
line = ""
for key, value in infos.items():
line += f"{key}={value} "
writer.add_scalar(key=key, value=value, step=train_state.step_count)
if update_panel:
logger.info(
line,
extra={
"step": batch_count,
"lr": lr,
"num_consumed_tokens": train_state.num_consumed_tokens,
"grad_norm": grad_norm,
"loss": loss.item(),
"flops": tflops,
"tgs": tk_per_gpu,
"acc": acc_perplex["acc"],
"perplexity": acc_perplex["perplexity"],
"fwd_bwd_time": fwd_bwd_time,
},
)
else:
logger.info(line)
# if loss spike occurs, send alert info to feishu
mm.monitor_loss_spike(alert_address=gpc.config.alert_address, step_count=batch_count, cur_step_loss=loss.item())
def main(args):
# init setting
skip_batches = gpc.config.data.skip_batches
total_steps = gpc.config.data.total_steps
valid_every = gpc.config.data.valid_every
label_smoothing = gpc.config.loss.label_smoothing
lr = gpc.config.adam.lr
get_tflops_func = partial(
get_megatron_flops,
checkpoint=gpc.config.model.checkpoint,
seq_len=gpc.config.SEQ_LEN,
hidden_size=gpc.config.model.hidden_size,
num_layers=gpc.config.model.num_layers,
vocab_size=gpc.config.model.vocab_size,
global_batch_size=gpc.config.data.micro_bsz * gpc.config.data.micro_num * gpc.get_world_size(ParallelMode.DATA),
global_world_size=gpc.get_world_size(ParallelMode.GLOBAL),
mlp_ratio=gpc.config.MLP_RATIO,
)
# get and broadcast current time
current_time = launch_time()
objs = [current_time]
dist.broadcast_object_list(objs, src=0)
current_time = objs[0]
# initialize customed llm logger
uniscale_logger = initialize_llm_logger(start_time=current_time)
# initialize customed llm writer
with open(args.config, "r") as f:
config_lines = f.readlines()
writer = Writer(
job_name=gpc.config.JOB_NAME,
launch_time=current_time,
file_name=get_parallel_log_file_name(),
tensorboard_folder=gpc.config.tensorboard_folder,
resume_tb_folder=gpc.config.resume_tb_folder,
config=config_lines,
logger=logger,
enable_tb=gpc.config.enable_tb,
)
# initialize and resume train state
train_state = TrainState(gpc.config)
# initialize model
model = initialize_model()
ckpt_manager = CheckpointManager(
ckpt_config=gpc.config.ckpt,
model=model,
model_config=gpc.config.model,
feishu_address=gpc.config.alert_address,
)
# initialize loss function
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=label_smoothing)
# initialize the train and validation data loader
train_dl, dataset_types = get_train_data_loader(num_worker=4)
val_dls = get_validation_data_loader()
train_state.init_batch_sampler(train_dl)
# Loading model weights must be done before zero is initialized.
ckpt_manager.try_load_model(current_time)
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=model)
# Loading other persistent training states.
ckpt_manager.try_resume_training(lr_scheduler, optimizer, lr, train_state, train_dl)
# initialize metric for calculating accuracy and perplexity
metric = AccPerplex(
device=torch.cuda.current_device(),
tp_pg=gpc.get_group(ParallelMode.TENSOR),
dp_pg=gpc.get_group(ParallelMode.DATA),
dataset_types=dataset_types,
)
# initialize trainer
scheduler_hooks = [
SchedulerMetricHook(
metric=metric,
skip=(
gpc.is_using_pp()
and hasattr(gpc.config.model, "num_chunks")
and gpc.config.model.num_chunks > 1
and gpc.config.parallel["pipeline"].get("interleaved_overlap", False)
),
),
]
trainer, train_dl, _, _ = internlm.initialize_trainer(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dl,
lr_scheduler=lr_scheduler,
beta2_scheduler=beta2_scheduler,
scheduler_hooks=scheduler_hooks,
)
# initialize simple memory profiler
if args.profiling:
memory_profiler = SimpleMemoryProfiler(
model,
optimizer.optim,
log_folder=f"memory_trace/rank{gpc.get_global_rank()}_"
+ f"dp{gpc.get_local_rank(ParallelMode.DATA)}_"
+ f"tp{gpc.get_local_rank(ParallelMode.TENSOR)}",
)
else:
memory_profiler = None
# initialize the batch skipper
batch_skipper = BatchSkipper(skip_batches)
trainer.train()
# transfer the train data loader into train data iterator
train_iter = iter(train_dl)
with initialize_llm_profile(profiling=args.profiling, start_time=current_time) as prof:
# start iterating the train data and begin training
for batch_count in range(train_state.batch_count, total_steps):
if batch_count % 50 == 0:
torch.cuda.empty_cache()
start_time = time.time()
timer("one-batch").start()
# load batch data
batch, train_iter = load_new_batch(train_dl=train_dl, train_iter=train_iter, train_state=train_state)
# record the consumed samples in training
train_state.batch_count = batch_count
train_state.num_consumed_samples_in_epoch += len(batch[1])
if batch_skipper(batch_count): # skip this batch
if gpc.is_rank_for_log():
logger.info(f"Skip batch count:`{batch_count}`...")
timer("one-batch").stop()
continue
# zero the grads of parameters
trainer.zero_grad()
# process data
if batch[0].get("type_ids", None) is not None:
metric.set_current_type_ids(type_ids=batch[0].pop("type_ids", None))
# do forward and backward
timer("fwd-bwd").start()
_, _, loss = trainer.execute_schedule(
batch, forward_only=False, return_loss=True, return_output_label=False
)
timer("fwd-bwd").stop()
# update parameters, and returns (success_update, grad_norm)
trainer_result = trainer.step()
assert trainer_result is not None
success_update, grad_norm_groups = trainer_result
if success_update: # update parameters successfully
train_state.step_count += 1
else:
train_state.inf_nan_skip_batches += 1 # record the amount of updating parameters unsuccessfully.
if -99.0 in grad_norm_groups and gpc.is_rank_for_log(): # -99.0 encodes a specific failure case
logger.warning(f"Warning: skip parameter update at step {batch_count}.")
send_alert_message(
address=gpc.config.alert_address,
message=f"Warning: skip parameter update at step {batch_count}.",
)
# calculate and record the training metrics, eg. loss, accuracy and so on.
record_current_batch_training_metrics(
get_tflops_func=get_tflops_func,
logger=logger,
writer=writer,
success_update=success_update,
batch_count=batch_count,
batch=batch,
train_state=train_state,
optimizer=optimizer,
beta2_scheduler=beta2_scheduler,
trainer=trainer,
start_time=start_time,
loss=loss,
grad_norm=np.array(grad_norm_groups),
metric=metric,
update_panel=uniscale_logger is not None,
)
timer("one-batch").stop()
# evaluate on validation data loaders
if valid_every > 0 and train_state.step_count % valid_every == 0:
evaluate_on_val_dls(
trainer=trainer,
val_dls=val_dls,
writer=writer,
logger=logger,
step_count=train_state.step_count,
update_panel=uniscale_logger is not None,
)
# checkpoint the training states in specific steps, which is determined by the args "checkpoint_every"
# # save batch sampler that tracks the true consumed samples
now_break = ckpt_manager.try_save_checkpoint(train_state)
if now_break:
break
if memory_profiler is not None:
memory_profiler.step()
prof.step()
ckpt_manager.wait_async_upload_finish()
if __name__ == "__main__":
args = parse_args()
hostname = socket.gethostname()
# initialize distributed environment
initialize_distributed_env(config=args.config, launcher=args.launcher, master_port=args.port, seed=args.seed)
assert hasattr(gpc, "config") and gpc.config is not None
# initialize monitor manager context
with initialize_monitor_manager(job_name=gpc.config.JOB_NAME, alert_address=gpc.config.alert_address):
try:
main(args)
except Exception:
logger.error(
f"Raise exception from {hostname} with rank id: {gpc.get_global_rank()}\n{traceback.format_exc()}",
)
mm.monitor_exception(alert_address=gpc.config.alert_address, excp_info=traceback.format_exc())