mirror of https://github.com/InternLM/InternLM
673 lines
24 KiB
Python
673 lines
24 KiB
Python
import os
|
|
import time
|
|
from collections import OrderedDict
|
|
from functools import partial, reduce
|
|
from typing import Any, Dict, List, Tuple
|
|
|
|
import pyecharts
|
|
import torch
|
|
|
|
from internlm.core.naive_amp import NaiveAMPModel
|
|
|
|
mb = 1024 * 1024
|
|
|
|
|
|
class SimpleMemState:
|
|
"""
|
|
A class to represent the memory state of a model layer.
|
|
|
|
Args:
|
|
layer_name (str): The name of the layer.
|
|
layer_mem (int): The memory usage of the layer in bytes.
|
|
"""
|
|
|
|
def __init__(self, layer_name: str, layer_mem: int = 0) -> None:
|
|
self.layer_name = layer_name
|
|
|
|
# Memory status of the current model layer.
|
|
self._layer_mem: int = layer_mem
|
|
# Total memory status of the model and sub-models, initialized with layer memory.
|
|
self._total_mem: int = self._layer_mem
|
|
# SimpleMemState of sub-models.
|
|
self.sub_model_stats = OrderedDict()
|
|
|
|
@property
|
|
def layer_mem(self) -> int:
|
|
"""
|
|
Get the memory usage of the layer.
|
|
|
|
Returns:
|
|
int: The memory usage of the layer in bytes.
|
|
"""
|
|
return self._layer_mem
|
|
|
|
@layer_mem.setter
|
|
def layer_mem(self, new_layer_mem: int) -> None:
|
|
"""
|
|
Set the memory usage of the layer.
|
|
|
|
Args:
|
|
new_layer_mem (int): The new memory usage of the layer in bytes.
|
|
"""
|
|
diff = new_layer_mem - self._layer_mem
|
|
self._layer_mem = new_layer_mem
|
|
self._total_mem += diff
|
|
|
|
@property
|
|
def total_mem(self) -> int:
|
|
"""
|
|
Get the total memory usage of the model and sub-models.
|
|
|
|
Returns:
|
|
int: The total memory usage in bytes.
|
|
"""
|
|
return self._total_mem
|
|
|
|
def add(self, layer_name: str, layer_mem: int = 0, flush: bool = True) -> None:
|
|
"""
|
|
Add a layer to the memory state.
|
|
|
|
Args:
|
|
layer_name (str): The name of the layer.
|
|
layer_mem (int, optional): The memory usage of the layer in bytes. Defaults to 0.
|
|
flush (bool, optional): Whether to update the total memory usage. Defaults to True.
|
|
"""
|
|
path = layer_name.split(".")
|
|
|
|
target = self.find_layer_state(path, create=True)
|
|
target.layer_mem = layer_mem
|
|
|
|
if flush:
|
|
self.update_total_memory()
|
|
|
|
def delete(self, layer_name: str, flush: bool = True) -> None:
|
|
"""
|
|
Delete a layer from the memory state.
|
|
|
|
Args:
|
|
layer_name (str): The name of the layer.
|
|
flush (bool, optional): Whether to update the total memory usage. Defaults to True.
|
|
"""
|
|
path = layer_name.split(".")
|
|
assert len(path) >= 2, f"Only support deleting non-root layers, layer_name: {layer_name}"
|
|
|
|
parent_path = path[0:-1]
|
|
layer = path[-1]
|
|
parent = self.find_layer_state(parent_path)
|
|
|
|
if parent is not None and layer in parent.sub_model_stats:
|
|
del parent.sub_model_stats[layer]
|
|
|
|
if flush:
|
|
self.update_total_memory()
|
|
|
|
def update_total_memory(self) -> None:
|
|
"""
|
|
Update the total memory usage of the model and sub-models.
|
|
"""
|
|
self._total_mem = self._layer_mem
|
|
|
|
for stat in self.sub_model_stats.values():
|
|
# Update sub-model status first.
|
|
stat.update_total_memory()
|
|
# Add sub-model total_mem to model total_mem.
|
|
self._total_mem += stat._total_mem
|
|
|
|
def find_layer_state(self, path: Tuple[str], create: bool = False) -> "SimpleMemState":
|
|
"""
|
|
Find the memory state of a layer.
|
|
|
|
Args:
|
|
path (Tuple[str]): The path to the layer.
|
|
create (bool, optional): Whether to create the layer if it doesn't exist. Defaults to False.
|
|
|
|
Returns:
|
|
SimpleMemState: The memory state of the layer.
|
|
"""
|
|
current_node = self
|
|
|
|
for _node in path:
|
|
if _node not in current_node.sub_model_stats:
|
|
if not create:
|
|
return None
|
|
# Create a layer node.
|
|
current_node.sub_model_stats[_node] = SimpleMemState(_node)
|
|
|
|
current_node = current_node.sub_model_stats[_node]
|
|
|
|
return current_node
|
|
|
|
def dump(self, prefix: str = "") -> str:
|
|
"""
|
|
Dump the memory state of the model and sub-models.
|
|
|
|
Args:
|
|
prefix (str, optional): The prefix to add to the layer names. Defaults to "".
|
|
|
|
Returns:
|
|
str: The memory state information.
|
|
"""
|
|
cur_prefix = prefix + "." + self.layer_name if prefix != "" else self.layer_name
|
|
res = f"layer: {cur_prefix}, layer_mem: {self.layer_mem / mb:.2f} MB, total_mem: {self.total_mem / mb:.2f} MB\n"
|
|
|
|
for sub_layer in self.sub_model_stats.values():
|
|
res += sub_layer.dump(cur_prefix)
|
|
|
|
return res
|
|
|
|
def to_json(self, base: int = 1024 * 1024) -> dict:
|
|
"""
|
|
Convert the memory state to a JSON structure.
|
|
|
|
Returns:
|
|
dict: The JSON structure of the memory state.
|
|
"""
|
|
children = [child.to_json() for child in self.sub_model_stats.values()]
|
|
if len(children) == 0:
|
|
return {"name": self.layer_name, "value": self.layer_mem // base}
|
|
else:
|
|
return {"name": self.layer_name, "children": children}
|
|
|
|
|
|
class ActivationMemState:
|
|
"""
|
|
Activation Memory State
|
|
"""
|
|
|
|
def __init__(self, num_chunks: int) -> None:
|
|
self._num_chunks = num_chunks
|
|
|
|
self.inited: List[bool] = [False for _ in range(num_chunks)]
|
|
self.states: List[SimpleMemState] = [SimpleMemState(f"activations_{idx}") for idx in range(num_chunks)]
|
|
|
|
@property
|
|
def total_mem(self) -> int:
|
|
return sum(state.total_mem for state in self.states)
|
|
|
|
def dump(self, prefix: str = "") -> str:
|
|
return reduce(lambda x, y: x + y, [state.dump(prefix) for state in self.states])
|
|
|
|
def to_json(self, base: int = 1024 * 1024) -> List:
|
|
return [state.to_json(base) for state in self.states]
|
|
|
|
|
|
def _unpack_naive_wrapper(model: torch.nn.Module) -> Tuple[torch.nn.Module, int]:
|
|
num_chunks = len(model) if isinstance(model, torch.nn.ModuleList) else 1
|
|
|
|
if num_chunks > 1:
|
|
model = torch.nn.ModuleList([_model.model if isinstance(_model, NaiveAMPModel) else _model for _model in model])
|
|
else:
|
|
model = model.model if isinstance(model, NaiveAMPModel) else model
|
|
|
|
return model, num_chunks
|
|
|
|
|
|
class SimpleMemoryProfiler:
|
|
"""
|
|
A memory profiler for a llm model.
|
|
|
|
Args:
|
|
model (torch.nn.Module): The model to profile.
|
|
optimizer (torch.optim.Optimizer): The optimizer used for training the model.
|
|
log_file (str): The file to write the memory state information to.
|
|
total_steps: number of steps to trace.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: torch.nn.Module,
|
|
optimizer: torch.optim.Optimizer,
|
|
log_folder: str,
|
|
total_steps: int = 5,
|
|
):
|
|
self._model, self._num_model_chunks = _unpack_naive_wrapper(model)
|
|
self._optimizer = optimizer
|
|
self._log_folder = log_folder
|
|
self._remaining_steps = total_steps
|
|
|
|
self._stoped = False
|
|
self._record_start_time = time.time()
|
|
|
|
# For activation memory state.
|
|
|
|
self._activation_mem: int = 0
|
|
self._activation_mem_max: int = 0
|
|
self._activation_base_mems = ActivationMemState(self._num_model_chunks)
|
|
|
|
# Check or create log folder
|
|
os.makedirs(self._log_folder, exist_ok=True)
|
|
|
|
# Register activation memory tracking hooks
|
|
if self._num_model_chunks > 1:
|
|
for chunk_id in range(self._num_model_chunks):
|
|
self._register_activation_trace_hooks(chunk_id, self._model[chunk_id])
|
|
else:
|
|
self._register_activation_trace_hooks(0, self._model)
|
|
|
|
# Calculate static parameter cuda memory
|
|
self._param_mem_state = SimpleMemState("param_mem")
|
|
self._calc_tensor_memory(self._param_mem_state, self._model.named_parameters())
|
|
# Calculate static grad cuda memory
|
|
self._grad_mem_state = SimpleMemState("grad_mem")
|
|
self._calc_tensor_memory(self._grad_mem_state, self._model.named_parameters(), True)
|
|
# Calculate static optimizer state cuda memory
|
|
self._os_params_mem_state = SimpleMemState("os_params_mem")
|
|
self._os_state_mem_state = SimpleMemState("os_state_mem")
|
|
self._calc_tensor_group_memory(self._os_params_mem_state, list(enumerate(self._optimizer.param_groups)))
|
|
|
|
# Generate the first memory record
|
|
self.point(with_options="params,grads,os_params", create=True)
|
|
|
|
def point(self, with_options: str = "", create: bool = False) -> None:
|
|
"""
|
|
Record the memory state.
|
|
|
|
Args:
|
|
with_options (str, optional): The options to include in the memory state. Defaults to "".
|
|
create (bool, optional): Whether to create a new memory record file. Defaults to False.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
now = time.time()
|
|
file = f"{self._log_folder}/memory.log"
|
|
|
|
if with_options == "all":
|
|
options = ["params", "grads", "os_params", "os_state", "activation_base"]
|
|
else:
|
|
options = with_options.split(",")
|
|
|
|
total_mem = (
|
|
self._param_mem_state.total_mem
|
|
+ self._grad_mem_state.total_mem
|
|
+ self._os_params_mem_state.total_mem
|
|
+ self._os_state_mem_state.total_mem
|
|
+ self._activation_mem
|
|
) / mb
|
|
|
|
# Generate summary information for memory state
|
|
summary_info = (
|
|
f"total_memory: {total_mem:.2f} MB"
|
|
+ "\n"
|
|
+ f"params_memory: {self._param_mem_state.total_mem / mb:.2f} MB, "
|
|
+ f"grads_memory: {self._grad_mem_state.total_mem / mb:.2f} MB, "
|
|
+ f"os_params_memory: {self._os_params_mem_state.total_mem / mb:.2f} MB, "
|
|
+ f"os_state_memory: {self._os_state_mem_state.total_mem / mb:.2f} MB, "
|
|
+ f"activation_memory: {self._activation_mem / mb:.2f} MB"
|
|
)
|
|
|
|
# Generate layout information based on selected options
|
|
layout_info = ""
|
|
if "params" in options:
|
|
layout_info += "params_layout:\n" + self._param_mem_state.dump()
|
|
if "grads" in options:
|
|
layout_info += "grads_layout:\n" + self._grad_mem_state.dump()
|
|
if "os_params" in options:
|
|
layout_info += "os_params_layout:\n" + self._os_params_mem_state.dump()
|
|
if "os_state" in options:
|
|
layout_info += "os_state_layout:\n" + self._os_state_mem_state.dump()
|
|
if "activation_base" in options:
|
|
layout_info += "activation_base_layout:\n" + self._activation_base_mems.dump()
|
|
|
|
# Write memory state information to log file
|
|
file_mode = "w" if create else "a"
|
|
with open(file, file_mode, encoding="utf-8") as writer:
|
|
writer.write(
|
|
"Memory State:\n" + f"time: {now - self._record_start_time}\n" + "---summary---\n" + summary_info + "\n"
|
|
)
|
|
if layout_info != "":
|
|
writer.write("---Layout---\n" + layout_info)
|
|
writer.write("\n")
|
|
|
|
def step(self) -> None:
|
|
"""
|
|
Update the memory state of the optimizer state.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if self._stoped:
|
|
return
|
|
|
|
self._remaining_steps -= 1
|
|
if self._remaining_steps == 0:
|
|
self._stoped = True
|
|
|
|
# Update os state memory usage
|
|
self._os_state_mem_state = SimpleMemState("os_state_mem")
|
|
self._calc_tensor_group_memory(self._os_state_mem_state, list(self._optimizer.state_dict()["state"].items()))
|
|
|
|
if not self._stoped:
|
|
# Do we need to print os_state_layout every time? Is it always constant?
|
|
self.point(with_options="os_state")
|
|
else:
|
|
# Dump memory layout
|
|
self.point(with_options="all")
|
|
# Generate sunburst charts
|
|
self._render_sunburst_chart(self._param_mem_state.to_json()["children"], "params_memory_sunburst")
|
|
self._render_sunburst_chart(self._grad_mem_state.to_json()["children"], "grads_memory_sunburst")
|
|
self._render_sunburst_chart(
|
|
[self._os_params_mem_state.to_json(), self._os_state_mem_state.to_json()],
|
|
"os_memory_sunburst",
|
|
)
|
|
self._render_sunburst_chart(self._activation_base_mems.to_json(), "activation_memory_sunburst")
|
|
# Generate summary sunburst chart
|
|
summary_sunburst_data = [
|
|
{"name": "params", "value": self._param_mem_state.total_mem // mb},
|
|
{"name": "grads", "value": self._grad_mem_state.total_mem // mb},
|
|
{"name": "os_params", "value": self._os_params_mem_state.total_mem // mb},
|
|
{"name": "os_state", "value": self._os_state_mem_state.total_mem // mb},
|
|
{"name": "activation", "value": self._activation_mem_max // mb},
|
|
]
|
|
|
|
self._render_sunburst_chart(summary_sunburst_data, "summary_sunburst")
|
|
|
|
def _render_sunburst_chart(self, data: Any, name: str) -> None:
|
|
pyecharts.charts.Sunburst(init_opts=pyecharts.options.InitOpts(width="1000px", height="1000px")).add(
|
|
name,
|
|
data_pair=data,
|
|
highlight_policy="ancestor",
|
|
radius=[0, "95%"],
|
|
levels=[
|
|
{},
|
|
{
|
|
"r0": "10%",
|
|
"r": "35%",
|
|
"itemStyle": {"borderWidth": 3},
|
|
"label": {"align": "left"},
|
|
},
|
|
{"r0": "35%", "r": "55%", "label": {"align": "left"}},
|
|
{"r0": "55%", "r": "70%", "label": {"align": "left"}},
|
|
{"r0": "70%", "r": "80%", "label": {"align": "left"}},
|
|
{"r0": "80%", "r": "90%", "label": {"align": "left"}},
|
|
{
|
|
"r0": "90%",
|
|
"r": "92%",
|
|
"label": {"position": "outside", "padding": 3, "silent": False},
|
|
"itemStyle": {"borderWidth": 3},
|
|
},
|
|
],
|
|
).set_global_opts(title_opts=pyecharts.options.TitleOpts(title="CUDA Memory")).set_series_opts(
|
|
label_opts=pyecharts.options.LabelOpts(formatter="{b}")
|
|
).render(
|
|
f"{self._log_folder}/{name}.html"
|
|
)
|
|
|
|
def _inner_activation_trace_hook(
|
|
self,
|
|
chunk_id: int,
|
|
layer_name: str,
|
|
model: Any,
|
|
inputs: Any,
|
|
output: torch.Tensor,
|
|
) -> None:
|
|
"""
|
|
Hook function to trace the activation memory usage for a inner layer.
|
|
|
|
Args:
|
|
layer_name (str): The name of the layer.
|
|
model (Any): The model.
|
|
inputs (Any): The inputs to the layer.
|
|
output (torch.Tensor): The output tensor.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
del model, inputs
|
|
assert isinstance(output, torch.Tensor), f"Invalid output type: {type(output)}"
|
|
|
|
if self._stoped or self._activation_base_mems.inited[chunk_id]:
|
|
return
|
|
|
|
# Delay updating the total_mem of activation_base_mem here, it will be handled in the forward ending hook.
|
|
self._activation_base_mems.states[chunk_id].add(
|
|
layer_name, output.element_size() * output.nelement(), flush=False
|
|
)
|
|
|
|
def _activation_trace_hook_forward(self, chunk_id: int, model: Any, inputs: Any, output: torch.Tensor) -> None:
|
|
"""
|
|
Hook function to trace the activation memory usage for a forward pass.
|
|
|
|
Args:
|
|
model (Any): The model.
|
|
inputs (Any): The inputs to the model.
|
|
output (torch.Tensor): The output tensor.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
del model, inputs
|
|
assert isinstance(output, torch.Tensor), f"invalid output type: {type(output)}"
|
|
|
|
if self._stoped:
|
|
return
|
|
|
|
# Check if the activation memory has been initialized
|
|
if self._activation_base_mems.inited[chunk_id] is False:
|
|
self._activation_base_mems.inited[chunk_id] = True
|
|
# Update the total memory of the activation base memory state
|
|
self._activation_base_mems.states[chunk_id].update_total_memory()
|
|
# Set with_options to "activation_base" to include activation_base_layout in the memory dump
|
|
with_options = "activation_base"
|
|
else:
|
|
with_options = ""
|
|
|
|
# Accumulate activation memory usage for each forward pass
|
|
self._activation_mem += self._activation_base_mems.states[chunk_id].total_mem
|
|
if self._activation_mem > self._activation_mem_max:
|
|
self._activation_mem_max = self._activation_mem
|
|
|
|
# Trigger a memory record
|
|
self.point(with_options)
|
|
|
|
def _activation_tarce_hook_backward(self, chunk_id: int, model: Any, inputs: Any, grad_outputs: Any) -> None:
|
|
"""
|
|
Hook function to trace the activation memory usage for a backward pass.
|
|
|
|
Args:
|
|
model (Any): The model.
|
|
inputs (Any): The inputs to the model.
|
|
grad_outputs (Any): The gradients of the outputs.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
del model, inputs, grad_outputs
|
|
|
|
if self._stoped:
|
|
return
|
|
|
|
# Release activation memory usage for each backward pass
|
|
self._activation_mem -= self._activation_base_mems.states[chunk_id].total_mem
|
|
|
|
# Trigger a memory record
|
|
self.point()
|
|
|
|
def _register_activation_trace_hooks(self, chunk_id: int, model_chunk: torch.nn.Module) -> None:
|
|
"""
|
|
Register activation trace hooks for the model and each submodule in the model.
|
|
"""
|
|
|
|
# Register inner activation trace hooks for each submodule in the model
|
|
for layer_name, sub_model in model_chunk.named_modules():
|
|
# Register the hook
|
|
if len(sub_model._modules) != 0:
|
|
continue # TODO: in some special cases, we may need some additional configuration to correct
|
|
|
|
sub_model.register_forward_hook(partial(self._inner_activation_trace_hook, chunk_id, layer_name))
|
|
|
|
# Register a forward hook for the main model to track activation memory usage
|
|
model_chunk.register_forward_hook(partial(self._activation_trace_hook_forward, chunk_id))
|
|
# Register a backward hook for the main model to release activation memory usage
|
|
model_chunk.register_full_backward_hook(partial(self._activation_tarce_hook_backward, chunk_id))
|
|
|
|
def _calc_tensor_memory(
|
|
self, root_stat: SimpleMemState, named_tensors: Dict[str, torch.Tensor], require_grad: bool = False
|
|
) -> None:
|
|
"""
|
|
Calculate the memory usage of tensors and update the memory state.
|
|
|
|
Args:
|
|
root_stat (SimpleMemState): The root memory state.
|
|
named_tensors (Dict[str, torch.Tensor]): A dictionary containing the named tensors.
|
|
require_grad (bool, optional): Whether to consider tensors with gradients. Defaults to False.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
for name, tensor in named_tensors:
|
|
if require_grad and not tensor.requires_grad:
|
|
continue
|
|
|
|
layer_splits = name.split(sep=".")
|
|
layer_stat = root_stat.find_layer_state(layer_splits, create=True)
|
|
layer_stat.layer_mem = tensor.element_size() * tensor.nelement()
|
|
|
|
root_stat.update_total_memory()
|
|
|
|
def _calc_tensor_group_memory(self, root_stat: SimpleMemState, tensor_groups: List[Tuple[int, torch.Tensor]]):
|
|
"""
|
|
Calculate the memory usage of a group of tensors.
|
|
|
|
Args:
|
|
root_stat (SimpleMemState): The root memory state.
|
|
tensor_groups (List[Tuple[int, torch.Tensor]]): A list of tuples containing the tensor groups.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
def _normalize_helper(named_tensors: Dict[str, Any]) -> List[Tuple[str, Any]]:
|
|
"""
|
|
Normalize the named tensors.
|
|
|
|
Args:
|
|
named_tensors (Dict[str, Any]): The named tensors to normalize.
|
|
|
|
Returns:
|
|
List[Tuple[str, Any]]: The normalized named tensors.
|
|
"""
|
|
res = {}
|
|
|
|
for name, tensors in named_tensors.items():
|
|
if isinstance(tensors, torch.Tensor):
|
|
res[name] = tensors
|
|
elif isinstance(tensors, (list, tuple)):
|
|
for index, tensor in enumerate(tensors):
|
|
res[f"{name}.{index}"] = tensor
|
|
elif isinstance(tensors, dict):
|
|
for subname, tensor in tensors.items():
|
|
res[f"{name}.{subname}"] = tensor
|
|
else:
|
|
raise TypeError(f"unsupported normalize value type: {type(tensors)}")
|
|
|
|
return list(res.items())
|
|
|
|
def _value_check(tensor_or_tensors):
|
|
"""
|
|
Check if the input is a tensor or a collection of tensors.
|
|
|
|
Args:
|
|
tensor_or_tensors (Any): The input to check.
|
|
|
|
Returns:
|
|
bool: True if the input is a tensor or a collection of tensors, False otherwise.
|
|
"""
|
|
if torch.is_tensor(tensor_or_tensors):
|
|
return True
|
|
elif isinstance(tensor_or_tensors, (list, tuple)) and all(torch.is_tensor(x) for x in tensor_or_tensors):
|
|
return True
|
|
elif isinstance(tensor_or_tensors, dict) and all(torch.is_tensor(x) for x in tensor_or_tensors.values()):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
# Calculate the memory usage of a group of tensors.
|
|
for idx, tensors in tensor_groups:
|
|
# Normalize the named tensors
|
|
named_tensors = {f"{idx}.{k}": v for k, v in tensors.items() if _value_check(v)}
|
|
named_tensors = _normalize_helper(named_tensors)
|
|
# Calculate the memory usage of the tensors and update the memory state
|
|
self._calc_tensor_memory(root_stat, named_tensors)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
class SimpleModel(torch.nn.Module):
|
|
"""
|
|
A simple model with three linear layers.
|
|
|
|
Args:
|
|
skip_layer2 (bool, optional): Whether to skip layer2. Defaults to False.
|
|
"""
|
|
|
|
def __init__(self, skip_layer2: bool = False):
|
|
super().__init__()
|
|
self.layer1 = torch.nn.Linear(5120, 5120, True)
|
|
self.layer3 = torch.nn.Linear(5120, 5120, False)
|
|
|
|
if skip_layer2:
|
|
self.layer2 = None
|
|
else:
|
|
self.layer2 = SimpleModel(skip_layer2=True)
|
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass of the model.
|
|
|
|
Args:
|
|
inputs (torch.Tensor): The input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: The output tensor.
|
|
"""
|
|
output1 = self.layer1(inputs)
|
|
if self.layer2 is not None:
|
|
output2 = self.layer2(output1)
|
|
else:
|
|
output2 = output1
|
|
output = self.layer3(output2)
|
|
|
|
return output
|
|
|
|
def _simple_schedule(_num_chunks, _model_chunks, _input) -> torch.Tensor:
|
|
if _num_chunks > 1:
|
|
_output = _input
|
|
for _model_chunk in _model_chunks:
|
|
_output = _model_chunk(_output)
|
|
else:
|
|
_output = _model_chunks(_input)
|
|
|
|
return _output
|
|
|
|
# num_chunks config
|
|
_num_chunks = 1
|
|
|
|
# init model and optimizer
|
|
if _num_chunks > 1:
|
|
_chunks = [SimpleModel(skip_layer2=idx % 2 == 0) for idx in range(_num_chunks)]
|
|
_model = torch.nn.ModuleList(_chunks).cuda()
|
|
else:
|
|
_model: torch.nn.Module = SimpleModel().cuda()
|
|
_optimizer = torch.optim.Adam(_model.parameters())
|
|
|
|
# init profiler
|
|
profiler = SimpleMemoryProfiler(_model, _optimizer, "./test_simple_memory_profiler", total_steps=1)
|
|
|
|
_optimizer.zero_grad()
|
|
|
|
# inputs
|
|
x1 = torch.randn((128, 5120)).cuda()
|
|
x2 = torch.randn((128, 5120)).cuda()
|
|
# forward
|
|
out1 = _simple_schedule(_num_chunks, _model, x1)
|
|
out2 = _simple_schedule(_num_chunks, _model, x2)
|
|
# backward
|
|
out1.mean().backward()
|
|
out2.mean().backward()
|
|
|
|
_optimizer.step()
|
|
|
|
# Update the optimizer state memory usage and record the memory state
|
|
profiler.step()
|