InternLM/tools
huangting4201 f5f5446560
Merge main to develop (#203)
* fix/fix_submodule_err (#61)

* fix/fix_submodule_err

---------

Co-authored-by: ChenQiaoling00 <qiaoling_chen@u.nus.edu>

* fix issue templates (#65)

* fix(tokenizer): refactor tokenizer and update usage in readme (#51)

* update tokenizer example

* fix(readme, requirements): fix typo at Chinese readme and select a lower version of transformers (#73)

* fix a typo in readme

* in order to find InternLMTokenizer, select a lower version of Transformers

---------

Co-authored-by: gouhchangjiang <gouhchangjiang@gmail.com>

* [Doc] Add wechat and discord link in readme (#78)

* Doc:add wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* Doc:update wechat and discord link

* [Docs]: add Japanese README (#43)

* Add Japanese README

* Update README-ja-JP.md

replace message

* Update README-ja-JP.md

* add repetition_penalty in GenerationConfig in web_demo.py (#48)

Co-authored-by: YWMditto <862779238@qq.com>

* use fp16 in instruction (#80)

* [Enchancement] add more options for issue template (#77)

* [Enchancement] add more options for issue template

* update qustion icon

* fix link

* Use tempfile for convert2hf.py (#23)

Fix https://github.com/InternLM/InternLM/issues/50

* delete torch_dtype of README's example code (#100)

* set the value of repetition_penalty to 1.0 to avoid random outputs (#99)

* Update web_demo.py (#97)

Remove meaningless log.

* [Fix]Fix wrong string cutoff in the script for sft text tokenizing (#106)

* docs(install.md): update dependency package transformers version to >= 4.28.0 (#124)

Co-authored-by: 黄婷 <huangting3@CN0014010744M.local>

* docs(LICENSE): add license (#125)

* add license of colossalai and flash-attn

* fix lint

* modify the name

* fix AutoModel map in convert2hf.py (#116)

* variables are not printly as expect (#114)

* feat(solver): fix code to adapt to torch2.0 and provide docker images (#128)

* feat(solver): fix code to adapt to torch2.0

* docs(install.md): publish internlm environment image

* docs(install.md): update dependency packages version

* docs(install.md): update default image

---------

Co-authored-by: 黄婷 <huangting3@CN0014010744M.local>

* add demo test (#132)

Co-authored-by: qa-caif-cicd <qa-caif-cicd@pjlab.org.cn>

* fix web_demo cache accelerate (#133)

* Doc: add twitter link (#141)

* Feat add checkpoint fraction (#151)

* feat(config): add checkpoint_fraction into config

* feat: remove checkpoint_fraction from configs/7B_sft.py

---------

Co-authored-by: wangguoteng.p <wangguoteng925@qq.com>

* [Doc] update deployment guide to keep consistency with lmdeploy (#136)

* update deployment guide

* fix error

* use llm partition (#159)

Co-authored-by: qa-caif-cicd <qa-caif-cicd@pjlab.org.cn>

* test(ci_scripts): clean test data after test, remove unnecessary global variables, and other optimizations (#165)

* test: optimization of ci scripts(variables, test data cleaning, etc).

* chore(workflows): disable ci job on push.

* fix: update partition

* test(ci_scripts): add install requirements automaticlly,trigger event about lint check and other optimizations (#174)

* add pull_request in lint check

* use default variables in ci_scripts

* fix format

* check and install requirements automaticlly

* fix format

---------

Co-authored-by: qa-caif-cicd <qa-caif-cicd@pjlab.org.cn>

* feat(profiling): add a simple memory profiler (#89)

* feat(profiling): add simple memory profiler

* feat(profiling): add profiling argument

* feat(CI_workflow): Add PR & Issue auto remove workflow (#184)

* feat(ci_workflow): Add PR & Issue auto remove workflow

Add a workflow for stale PR & Issue  auto remove
- pr & issue well be labeled as stale for inactive in 7 days
- staled PR & Issue  well be remove in 7 days
- run this workflow every day on 1:30 a.m.

* Update stale.yml

* feat(bot): Create .owners.yml for Auto Assign (#176)

* Create .owners.yml: for issue/pr assign automatically

* Update .owners.yml

* Update .owners.yml

fix typo

* [feat]: add pal reasoning script (#163)

* [Feat] Add PAL inference script

* Update README.md

* Update tools/README.md

Co-authored-by: BigDong <yudongwang1226@gmail.com>

* Update tools/pal_inference.py

Co-authored-by: BigDong <yudongwang1226@gmail.com>

* Update pal script

* Update README.md

* restore .ore-commit-config.yaml

* Update tools/README.md

Co-authored-by: BigDong <yudongwang1226@gmail.com>

* Update tools/README.md

Co-authored-by: BigDong <yudongwang1226@gmail.com>

* Update pal inference script

* Update READMD.md

* Update internlm/utils/interface.py

Co-authored-by: Wenwei Zhang <40779233+ZwwWayne@users.noreply.github.com>

* Update pal script

* Update pal script

* Update script

* Add docstring

* Update format

* Update script

* Update script

* Update script

---------

Co-authored-by: BigDong <yudongwang1226@gmail.com>
Co-authored-by: Wenwei Zhang <40779233+ZwwWayne@users.noreply.github.com>

* test(ci_scripts): add timeout settings and clean work after the slurm job (#185)

* restore pr test on develop branch

* add mask

* add post action to cancel slurm job

* remove readonly attribute on job log

* add debug info

* debug job log

* try stdin

* use stdin

* set default value avoid error

* try setting readonly on job log

* performance echo

* remove debug info

* use squeue to check slurm job status

* restore the lossed parm

* litmit retry times

* use exclusive to avoid port already in use

* optimize loop body

* remove partition

* add {} for variables

* set env variable for slurm partition

---------

Co-authored-by: qa-caif-cicd <qa-caif-cicd@pjlab.org.cn>

* refactor(tools): move interface.py and import it to web_demo (#195)

* move interface.py and import it to web_demo

* typo

* fix(ci): fix lint error

* fix(ci): fix lint error

---------

Co-authored-by: Sun Peng <sunpengsdu@gmail.com>
Co-authored-by: ChenQiaoling00 <qiaoling_chen@u.nus.edu>
Co-authored-by: Kai Chen <chenkaidev@gmail.com>
Co-authored-by: Yang Gao <Gary1546308416AL@gmail.com>
Co-authored-by: Changjiang GOU <gouchangjiang@gmail.com>
Co-authored-by: gouhchangjiang <gouhchangjiang@gmail.com>
Co-authored-by: vansin <msnode@163.com>
Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com>
Co-authored-by: YWMditto <46778265+YWMditto@users.noreply.github.com>
Co-authored-by: YWMditto <862779238@qq.com>
Co-authored-by: WRH <12756472+wangruohui@users.noreply.github.com>
Co-authored-by: liukuikun <24622904+Harold-lkk@users.noreply.github.com>
Co-authored-by: x54-729 <45304952+x54-729@users.noreply.github.com>
Co-authored-by: Shuo Zhang <zhangshuolove@live.com>
Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
Co-authored-by: 黄婷 <huangting3@CN0014010744M.local>
Co-authored-by: ytxiong <45058324+yingtongxiong@users.noreply.github.com>
Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>
Co-authored-by: kkscilife <126147887+kkscilife@users.noreply.github.com>
Co-authored-by: qa-caif-cicd <qa-caif-cicd@pjlab.org.cn>
Co-authored-by: hw <45089338+MorningForest@users.noreply.github.com>
Co-authored-by: Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Co-authored-by: wangguoteng.p <wangguoteng925@qq.com>
Co-authored-by: lvhan028 <lvhan_028@163.com>
Co-authored-by: zachtzy <141206206+zachtzy@users.noreply.github.com>
Co-authored-by: cx <759046501@qq.com>
Co-authored-by: Jaylin Lee <61487970+APX103@users.noreply.github.com>
Co-authored-by: del-zhenwu <dele.zhenwu@gmail.com>
Co-authored-by: Shaoyuan Xie <66255889+Daniel-xsy@users.noreply.github.com>
Co-authored-by: BigDong <yudongwang1226@gmail.com>
Co-authored-by: Wenwei Zhang <40779233+ZwwWayne@users.noreply.github.com>
Co-authored-by: huangting4201 <huangting3@sensetime.com>
2023-08-16 15:57:26 +08:00
..
transformers Merge main to develop (#203) 2023-08-16 15:57:26 +08:00
README.md Merge main to develop (#203) 2023-08-16 15:57:26 +08:00
README_EN.md Merge main to develop (#203) 2023-08-16 15:57:26 +08:00
V7_sft.model initial commit 2023-07-06 12:55:23 +08:00
alpaca_tokenizer.py [Dev] Pull Main (#139) 2023-07-27 10:20:21 +08:00
pal_inference.py Merge main to develop (#203) 2023-08-16 15:57:26 +08:00
tokenizer.py [Develop] Pull Main Branch (#121) 2023-07-21 20:44:33 +08:00

README_EN.md

This directory provide some tools for model training with the following file structure.

├── transformers  # tools for adapting Hugging Face's transformers
│   ├── configuration_internlm.py  # tools for adapting config
│   ├── modeling_internlm.py  # tools for adapting model
│   └── tokenization_internlm.py  # tools for adapting tokenizer
│   └── convert2hf.py  # tools for adapting models to Hugging Face's format
└── tokenizer.py  # tools for generating `bin` and `meta` file for raw data

tokenizer.py

We need to use a tokenizer to generate bin and meta files for raw data. We import the tokenizer model by specifying the model weight path in tools/tokenizer.py. Currently, we provide V7.model to generate tokens. If you want to use a different model, you can modify the model weight path in tokenizer.py directly.

We can run the following command to generate bin and meta files corresponding to the original data. The parameter text_input_path represents the path of the original text data, currently supporting txt, json, and jsonl formats, while bin_output_path represents the save path of the generated bin files.

$ python tools/tokenizer.py --text_input_path your_input_text_path --bin_output_path your_output_bin_path

An example of data processing in txt format is given here:

Given a file raw_data.txt containg raw data with the following content.

Appreciate every detail in life to truly taste the flavor of happiness.
Dreams are the source of lifes motivation. Pursue them diligently to achieve your goals.
Learn to be tolerant and understanding to establish truly harmonious interpersonal relationships.

Next, we can run the following command to generate bin and meta files for raw data.

$ python tools/tokenizer.py --text_input_path your_input_text_path --bin_output_path your_output_bin_path

It should be noted that the generated bin files should be placed in one of the following directories to clarify the data type: cn(Chinese), en(English), code(code data), ja(Japanese), ar(Arabic) and kaoshi(kaoshi data).

The format of generated bin file is as follows.

{"tokens": [98655, 2317, 2922, 6649, 1595, 7856, 435, 2424, 442, 9556, 12807, 410, 17313, 446, 23331, 95746]}
{"tokens": [98655, 302, 1383, 269, 657, 410, 2687, 446, 2424, 98667, 269, 25220, 281, 523, 1874, 492, 1248, 38127, 4563, 442, 11227, 829, 8980, 95746]}
{"tokens": [98655, 24190, 442, 517, 15013, 649, 454, 8793, 442, 5849, 9556, 17917, 1369, 1084, 29890, 12021, 95746]}

In the generated bin file, each line (sequence) corresponds to the tokens for each sentence in the raw data.

The format of generated meta file in as follows.

(0, 16), (110, 24), (262, 17)

Each tuple in the meta file represents the meta information of each sequence where the first element in the tuple indicates the starting index of each sequence among all sequences and the second element indicates the amount of tokens for each sequence.

For example, the starting index is 0 for the first sequence with 16 tokens. Since the length of sequence in string format is 109, the starting index is 110. And the number of tokens of the sencond sequence is 24.

The bin and meta file formats for json and jsonl type files are the same as for txt, so we won't go over them here.

pal_inference.py

Perform reasoning using PAL on the GSM8K dataset, allowing the model to generate code and solve mathematical problems through Python interpretation. Here's how you can use it:

# Usage:
python pal_inference.py <model> <out_dir> [--dataset <dataset>] [--max_length <length>] [--top_p <threshold>] [--eoh <end token>] [--eoa <end token>] [--eos <end token>] [--temperature <temp>] [--time_out <time>] [--verbose, -v] [--append, -a]

# Parameters:
# <model>                   Path to the model used for inference.
# <out_dir>                 Generated code will be saved in the specified output folder.

# Optional arguments:
# --dataset <dataset>       Dataset name used for code generation (default: gsm8k).
# --max_length <length>     Model's maximum input token length (default: 2048).
# --top_p <threshold>       Probability threshold for candidate tokens (default: 0.8).
# --eoh <end token>         End of human (user) token. (default: "").
# --eoa <end token>         End of assistant (bot) token. (default: "").
# --eos <end token>         End of system token. (default: "").
# --temperature, -t <temp>  Sampling temperature during generation (default: 1.0).
# --time_out <time>         Maximum time (in seconds) for executing the generated code (default: 100).
# --verbose, -v             Print code error messages (optional).
# --append, -a              ppend the output to historical results (optional).

Below is an example of usage:

python tools/pal_inference.py internlm/internlm-chat-7k ./output -v

The output file contains each line with the input question, the correct answer, the executed answer, the score, and the Python code block generated by the model:

{
    "question": "Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?",
    "target": 18.0,
    "answer": 18.0,
    "score": 1,
    "generation": ["```python\ndef solution():\n    eggs_per_day = 16\n    eggs_per_breakfast = 3\n    eggs_per_muffin = 4\n    eggs_used = eggs_per_day - eggs_per_breakfast - eggs_per_muffin\n    eggs_sold = eggs_used\n    price_per_egg = 2\n    eggs_made = eggs_sold * price_per_egg\n    result = eggs_made\n    return result\n```"]
}

InternLM performance in the GSM8K dataset with and without tools:

Method InternLM-Chat-7B
w/o tool 34.5
w tool 39.2