InternLM/train.py

344 lines
12 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import socket
import time
import traceback
from functools import partial
from typing import List, Optional
import torch
import torch.distributed as dist
import internlm
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.scheduler import SchedulerHook
from internlm.core.trainer import TrainState
from internlm.initialize import initialize_distributed_env
from internlm.model.loss import FlashGPTLMLoss
from internlm.model.metrics import AccPerplex, SchedulerMetricHook
from internlm.model.overlap_handler import FSTPOverlapSchedulerHook
from internlm.monitor import initialize_monitor_manager, send_alert_message
from internlm.monitor.monitor import monitor_manager as mm
from internlm.train import (
get_train_data_loader,
get_validation_data_loader,
initialize_llm_profile,
initialize_model,
initialize_optimizer,
load_new_batch,
record_current_batch_training_metrics,
)
from internlm.utils.common import (
BatchSkipper,
get_megatron_flops,
launch_time,
parse_args,
)
from internlm.utils.evaluation import evaluate_on_val_dls
from internlm.utils.gputest import empty_cache_and_diag
from internlm.utils.logger import get_logger, initialize_uniscale_logger
from internlm.utils.megatron_timers import megatron_timer as timer
from internlm.utils.model_checkpoint import CheckpointManager
from internlm.utils.parallel import get_parallel_log_file_name
from internlm.utils.simple_memory_profiler import SimpleMemoryProfiler
from internlm.utils.writer import Writer
# global llm logger
logger = get_logger(__file__)
def initialize_llm_logger(start_time: str):
"""
Initialize customed uniscale logger.
Args:
start_time (str): The launch time of current training job.
Returns: The instance of uniscale logger.
"""
uniscale_logger = initialize_uniscale_logger(
job_name=gpc.config.JOB_NAME, launch_time=start_time, file_name=get_parallel_log_file_name()
)
if uniscale_logger is not None:
global logger
logger = uniscale_logger
return uniscale_logger
def get_scheduler_hooks(
metric: Optional[AccPerplex] = None, activation_checkpoint: bool = False
) -> List[SchedulerHook]:
scheduler_hooks: List[SchedulerHook] = []
if metric is not None:
scheduler_hooks.append(
SchedulerMetricHook(
metric=metric,
skip=(
gpc.is_using_pp()
and hasattr(gpc.config.model, "num_chunks")
and gpc.config.model.num_chunks > 1
and gpc.config.parallel["pipeline"].get("interleaved_overlap", False)
),
),
)
if activation_checkpoint:
scheduler_hooks.append(FSTPOverlapSchedulerHook(gpc.fstp_handler))
return scheduler_hooks
def main(args):
# init setting
skip_batches = gpc.config.data.skip_batches
total_steps = gpc.config.data.total_steps
valid_every = gpc.config.data.valid_every
label_smoothing = gpc.config.loss.label_smoothing
get_tflops_func = partial(
get_megatron_flops,
checkpoint=gpc.config.model.checkpoint,
seq_len=gpc.config.SEQ_LEN,
hidden_size=gpc.config.model.hidden_size,
num_layers=gpc.config.model.num_layers,
vocab_size=gpc.config.model.vocab_size,
global_batch_size=gpc.config.data.micro_bsz * gpc.config.data.micro_num * gpc.get_world_size(ParallelMode.DATA),
global_world_size=gpc.get_world_size(ParallelMode.GLOBAL),
mlp_ratio=gpc.config.MLP_RATIO,
)
# get and broadcast current time
current_time = launch_time()
objs = [current_time]
dist.broadcast_object_list(objs, src=0)
current_time = objs[0]
# initialize customed llm logger
uniscale_logger = initialize_llm_logger(start_time=current_time)
# initialize model
model = initialize_model()
with open(args.config, "r") as f:
config_lines = f.readlines()
# initialize loss function
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=label_smoothing)
# initialize the train and validation data loader
train_dl, dataset_types = get_train_data_loader(num_worker=4)
val_dls = get_validation_data_loader()
# initialize and resume train state
train_state = TrainState(gpc.config, train_dl.batch_sampler)
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=model)
ckpt_manager = CheckpointManager(
ckpt_config=gpc.config.ckpt,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
train_dl=train_dl,
model_config=gpc.config.model,
model_config_file="".join(config_lines),
feishu_address=gpc.config.monitor.alert.feishu_alert_address,
)
# Loading other persistent training states.
ckpt_manager.try_resume_training(train_state, current_time)
# initialize customed llm writer
writer = Writer(
job_name=gpc.config.JOB_NAME,
launch_time=current_time,
file_name=get_parallel_log_file_name(),
tensorboard_folder=gpc.config.tensorboard_folder,
resume_tb_folder=train_state.resume_tb_folder, # resume from ckpt.
step_count=train_state.step_count, # resume from ckpt.
config=config_lines,
logger=logger,
enable_tb=gpc.config.enable_tb,
)
# initialize metric for calculating accuracy and perplexity
metric = AccPerplex(
device=torch.cuda.current_device(),
tp_pg=gpc.get_group(ParallelMode.TENSOR),
dp_pg=gpc.get_group(ParallelMode.DATA),
dataset_types=dataset_types,
)
# initialize trainer
trainer, train_dl, _, _ = internlm.initialize_trainer(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dl,
lr_scheduler=lr_scheduler,
beta2_scheduler=beta2_scheduler,
scheduler_hooks=get_scheduler_hooks(metric, gpc.config.model.checkpoint),
)
# initialize simple memory profiler
if args.profiling:
memory_profiler = SimpleMemoryProfiler(
model,
optimizer.optim,
log_folder=f"memory_trace/rank{gpc.get_global_rank()}_"
+ f"dp{gpc.get_local_rank(ParallelMode.DATA)}_"
+ f"tp{gpc.get_local_rank(ParallelMode.TENSOR)}",
)
else:
memory_profiler = None
# initialize the batch skipper
batch_skipper = BatchSkipper(skip_batches)
trainer.train()
# transfer the train data loader into train data iterator
train_iter = iter(train_dl)
with initialize_llm_profile(profiling=args.profiling, start_time=current_time) as prof:
# start iterating the train data and begin training
for batch_count in range(train_state.batch_count, total_steps):
empty_cache_and_diag(batch_count, interval=gpc.config.data.empty_cache_and_diag_interval)
# torch.cuda.memory._record_memory_history()
start_time = time.time()
timer("one-batch").start()
# load batch data
batch, train_iter = load_new_batch(train_dl=train_dl, train_iter=train_iter, train_state=train_state)
# record the consumed samples in training
train_state.batch_count = batch_count
train_state.num_consumed_samples_in_epoch += len(batch[1])
if batch_skipper(batch_count): # skip this batch
if gpc.is_rank_for_log():
logger.info(f"Skip batch count:`{batch_count}`...")
timer("one-batch").stop()
continue
# zero the grads of parameters
trainer.zero_grad()
# process data
if batch[0].get("type_ids", None) is not None:
metric.set_current_type_ids(type_ids=batch[0].pop("type_ids", None))
# do forward and backward
timer("fwd-bwd").start()
moe_loss = None
if hasattr(gpc.config.model, "num_experts"):
_, _, loss, moe_loss = trainer.execute_schedule(
batch,
forward_only=False,
return_loss=True,
return_output_label=False,
)
else:
_, _, loss = trainer.execute_schedule(
batch,
forward_only=False,
return_loss=True,
return_output_label=False,
)
timer("fwd-bwd").stop()
# update parameters, and returns (success_update, grad_norm)
trainer_result = trainer.step()
assert trainer_result is not None
success_update, grad_norm_groups = trainer_result
if success_update: # update parameters successfully
train_state.step_count += 1
else:
train_state.inf_nan_skip_batches += 1 # record the amount of updating parameters unsuccessfully.
if -1 in grad_norm_groups.values() and gpc.is_rank_for_log(): # -1 encodes a specific failure case
logger.warning(f"Warning: skip parameter update at step {batch_count}.")
send_alert_message(
address=gpc.config.monitor.alert.feishu_alert_address,
message=f"Warning: skip parameter update at step {batch_count}.",
)
# calculate and record the training metrics, eg. loss, accuracy and so on.
record_current_batch_training_metrics(
get_tflops_func=get_tflops_func,
logger=logger,
writer=writer,
success_update=success_update,
batch_count=batch_count,
batch=batch,
train_state=train_state,
optimizer=optimizer,
beta2_scheduler=beta2_scheduler,
trainer=trainer,
start_time=start_time,
loss=loss,
moe_loss=moe_loss,
grad_norm=grad_norm_groups,
metric=metric,
update_panel=uniscale_logger is not None,
)
timer("one-batch").stop()
# evaluate on validation data loaders
if valid_every > 0 and train_state.step_count % valid_every == 0:
evaluate_on_val_dls(
trainer=trainer,
val_dls=val_dls,
writer=writer,
logger=logger,
step_count=train_state.step_count,
update_panel=uniscale_logger is not None,
)
# checkpoint the training states in specific steps, which is determined by the args "checkpoint_every"
# # save batch sampler that tracks the true consumed samples
now_break = ckpt_manager.try_save_checkpoint(train_state)
if now_break:
break
if memory_profiler is not None:
memory_profiler.step()
prof.step()
if gpc.fstp_handler is not None:
gpc.fstp_handler.clear_memory_pool()
# torch.cuda.memory._dump_snapshot(f"my_snapshot_{gpc.get_global_rank()}.pickle")
torch.cuda.reset_peak_memory_stats()
ckpt_manager.wait_async_upload_finish()
if __name__ == "__main__":
args = parse_args()
hostname = socket.gethostname()
# initialize distributed environment
initialize_distributed_env(config=args.config, launcher=args.launcher, master_port=args.port, seed=args.seed)
assert hasattr(gpc, "config") and gpc.config is not None
# initialize monitor manager context
with initialize_monitor_manager(
job_name=gpc.config.JOB_NAME, alert_address=gpc.config.monitor.alert.feishu_alert_address
):
try:
main(args)
except Exception:
logger.error(
f"Raise exception from {hostname} with rank id: {gpc.get_global_rank()}\n{traceback.format_exc()}",
)
mm.monitor_exception(
alert_address=gpc.config.monitor.alert.feishu_alert_address, excp_info=traceback.format_exc()
)