mirror of https://github.com/InternLM/InternLM
				
				
				
			
		
			
				
	
	
		
			1016 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			1016 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			Python
		
	
	
# coding=utf-8
 | 
						|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
 | 
						|
#
 | 
						|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
						|
# and OPT implementations in this library. It has been modified from its
 | 
						|
# original forms to accommodate minor architectural differences compared
 | 
						|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
""" PyTorch InternLM model."""
 | 
						|
import math
 | 
						|
from typing import List, Optional, Tuple, Union
 | 
						|
import threading, queue
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.utils.checkpoint
 | 
						|
from torch import nn
 | 
						|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
 | 
						|
 | 
						|
from transformers.activations import ACT2FN
 | 
						|
from transformers.modeling_outputs import (
 | 
						|
    BaseModelOutputWithPast,
 | 
						|
    CausalLMOutputWithPast,
 | 
						|
    SequenceClassifierOutputWithPast,
 | 
						|
)
 | 
						|
from transformers.modeling_utils import PreTrainedModel
 | 
						|
from transformers.generation.streamers import BaseStreamer
 | 
						|
from transformers.utils import (
 | 
						|
    add_start_docstrings,
 | 
						|
    add_start_docstrings_to_model_forward,
 | 
						|
    logging,
 | 
						|
    replace_return_docstrings,
 | 
						|
)
 | 
						|
from configuration_internlm import InternLMConfig
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
_CONFIG_FOR_DOC = "InternLMConfig"
 | 
						|
 | 
						|
 | 
						|
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
 | 
						|
def _make_causal_mask(
 | 
						|
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
 | 
						|
):
 | 
						|
    """
 | 
						|
    Make causal mask used for bi-directional self-attention.
 | 
						|
    """
 | 
						|
    bsz, tgt_len = input_ids_shape
 | 
						|
    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
 | 
						|
    mask_cond = torch.arange(mask.size(-1), device=device)
 | 
						|
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
 | 
						|
    mask = mask.to(dtype)
 | 
						|
 | 
						|
    if past_key_values_length > 0:
 | 
						|
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
 | 
						|
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
 | 
						|
 | 
						|
 | 
						|
# Copied from transformers.models.bart.modeling_bart._expand_mask
 | 
						|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
 | 
						|
    """
 | 
						|
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
 | 
						|
    """
 | 
						|
    bsz, src_len = mask.size()
 | 
						|
    tgt_len = tgt_len if tgt_len is not None else src_len
 | 
						|
 | 
						|
    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
 | 
						|
 | 
						|
    inverted_mask = 1.0 - expanded_mask
 | 
						|
 | 
						|
    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
 | 
						|
 | 
						|
 | 
						|
class InternLMRMSNorm(nn.Module):
 | 
						|
    def __init__(self, hidden_size, eps=1e-6):
 | 
						|
        """
 | 
						|
        InternLMRMSNorm is equivalent to T5LayerNorm
 | 
						|
        """
 | 
						|
        super().__init__()
 | 
						|
        self.weight = nn.Parameter(torch.ones(hidden_size))
 | 
						|
        self.variance_epsilon = eps
 | 
						|
 | 
						|
    def forward(self, hidden_states):
 | 
						|
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
 | 
						|
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
 | 
						|
 | 
						|
        # convert into half-precision if necessary
 | 
						|
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
 | 
						|
            hidden_states = hidden_states.to(self.weight.dtype)
 | 
						|
 | 
						|
        return self.weight * hidden_states
 | 
						|
 | 
						|
 | 
						|
class InternLMRotaryEmbedding(torch.nn.Module):
 | 
						|
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
 | 
						|
        super().__init__()
 | 
						|
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
 | 
						|
        self.register_buffer("inv_freq", inv_freq)
 | 
						|
 | 
						|
        # Build here to make `torch.jit.trace` work.
 | 
						|
        self.max_seq_len_cached = max_position_embeddings
 | 
						|
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
 | 
						|
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
 | 
						|
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
 | 
						|
        emb = torch.cat((freqs, freqs), dim=-1)
 | 
						|
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
 | 
						|
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
 | 
						|
 | 
						|
    def forward(self, x, seq_len=None):
 | 
						|
        # x: [bs, num_attention_heads, seq_len, head_size]
 | 
						|
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
 | 
						|
        if seq_len > self.max_seq_len_cached:
 | 
						|
            self.max_seq_len_cached = seq_len
 | 
						|
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
 | 
						|
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
 | 
						|
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
 | 
						|
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
 | 
						|
            self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
 | 
						|
            self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
 | 
						|
        return (
 | 
						|
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
 | 
						|
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def rotate_half(x):
 | 
						|
    """Rotates half the hidden dims of the input."""
 | 
						|
    x1 = x[..., : x.shape[-1] // 2]
 | 
						|
    x2 = x[..., x.shape[-1] // 2 :]
 | 
						|
    return torch.cat((-x2, x1), dim=-1)
 | 
						|
 | 
						|
 | 
						|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
 | 
						|
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
 | 
						|
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
						|
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
 | 
						|
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
						|
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
 | 
						|
    q_embed = (q * cos) + (rotate_half(q) * sin)
 | 
						|
    k_embed = (k * cos) + (rotate_half(k) * sin)
 | 
						|
    return q_embed, k_embed
 | 
						|
 | 
						|
 | 
						|
class InternLMMLP(nn.Module):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        hidden_size: int,
 | 
						|
        intermediate_size: int,
 | 
						|
        hidden_act: str,
 | 
						|
    ):
 | 
						|
        super().__init__()
 | 
						|
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
 | 
						|
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
 | 
						|
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
 | 
						|
        self.act_fn = ACT2FN[hidden_act]
 | 
						|
 | 
						|
    def forward(self, x):
 | 
						|
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
 | 
						|
 | 
						|
 | 
						|
class InternLMAttention(nn.Module):
 | 
						|
    """Multi-headed attention from 'Attention Is All You Need' paper"""
 | 
						|
 | 
						|
    def __init__(self, config: InternLMConfig):
 | 
						|
        super().__init__()
 | 
						|
        self.config = config
 | 
						|
        self.hidden_size = config.hidden_size
 | 
						|
        self.num_heads = config.num_attention_heads
 | 
						|
        self.head_dim = self.hidden_size // self.num_heads
 | 
						|
        self.max_position_embeddings = config.max_position_embeddings
 | 
						|
 | 
						|
        if (self.head_dim * self.num_heads) != self.hidden_size:
 | 
						|
            raise ValueError(
 | 
						|
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
 | 
						|
                f" and `num_heads`: {self.num_heads})."
 | 
						|
            )
 | 
						|
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
 | 
						|
        self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
 | 
						|
        self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
 | 
						|
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
 | 
						|
        self.rotary_emb = InternLMRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
 | 
						|
 | 
						|
    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
 | 
						|
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        hidden_states: torch.Tensor,
 | 
						|
        attention_mask: Optional[torch.Tensor] = None,
 | 
						|
        position_ids: Optional[torch.LongTensor] = None,
 | 
						|
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
        output_attentions: bool = False,
 | 
						|
        use_cache: bool = False,
 | 
						|
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 | 
						|
        bsz, q_len, _ = hidden_states.size()
 | 
						|
 | 
						|
        query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
        value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
 | 
						|
 | 
						|
        kv_seq_len = key_states.shape[-2]
 | 
						|
        if past_key_value is not None:
 | 
						|
            kv_seq_len += past_key_value[0].shape[-2]
 | 
						|
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
						|
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
 | 
						|
        # [bsz, nh, t, hd]
 | 
						|
 | 
						|
        if past_key_value is not None:
 | 
						|
            # reuse k, v, self_attention
 | 
						|
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
 | 
						|
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
 | 
						|
 | 
						|
        past_key_value = (key_states, value_states) if use_cache else None
 | 
						|
 | 
						|
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
						|
 | 
						|
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
						|
            raise ValueError(
 | 
						|
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
						|
                f" {attn_weights.size()}"
 | 
						|
            )
 | 
						|
 | 
						|
        if attention_mask is not None:
 | 
						|
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
 | 
						|
                raise ValueError(
 | 
						|
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
 | 
						|
                )
 | 
						|
            attn_weights = attn_weights + attention_mask
 | 
						|
            attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
 | 
						|
 | 
						|
        # upcast attention to fp32
 | 
						|
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
						|
        attn_output = torch.matmul(attn_weights, value_states)
 | 
						|
 | 
						|
        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
						|
            raise ValueError(
 | 
						|
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
 | 
						|
                f" {attn_output.size()}"
 | 
						|
            )
 | 
						|
 | 
						|
        attn_output = attn_output.transpose(1, 2)
 | 
						|
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
						|
 | 
						|
        attn_output = self.o_proj(attn_output)
 | 
						|
 | 
						|
        if not output_attentions:
 | 
						|
            attn_weights = None
 | 
						|
 | 
						|
        return attn_output, attn_weights, past_key_value
 | 
						|
 | 
						|
 | 
						|
class InternLMDecoderLayer(nn.Module):
 | 
						|
    def __init__(self, config: InternLMConfig):
 | 
						|
        super().__init__()
 | 
						|
        self.hidden_size = config.hidden_size
 | 
						|
        self.self_attn = InternLMAttention(config=config)
 | 
						|
        self.mlp = InternLMMLP(
 | 
						|
            hidden_size=self.hidden_size,
 | 
						|
            intermediate_size=config.intermediate_size,
 | 
						|
            hidden_act=config.hidden_act,
 | 
						|
        )
 | 
						|
        self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | 
						|
        self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        hidden_states: torch.Tensor,
 | 
						|
        attention_mask: Optional[torch.Tensor] = None,
 | 
						|
        position_ids: Optional[torch.LongTensor] = None,
 | 
						|
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
 | 
						|
        output_attentions: Optional[bool] = False,
 | 
						|
        use_cache: Optional[bool] = False,
 | 
						|
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
 | 
						|
        """
 | 
						|
        Args:
 | 
						|
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
 | 
						|
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
 | 
						|
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
 | 
						|
            output_attentions (`bool`, *optional*):
 | 
						|
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
 | 
						|
                returned tensors for more detail.
 | 
						|
            use_cache (`bool`, *optional*):
 | 
						|
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
 | 
						|
                (see `past_key_values`).
 | 
						|
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
 | 
						|
        """
 | 
						|
 | 
						|
        residual = hidden_states
 | 
						|
 | 
						|
        hidden_states = self.input_layernorm(hidden_states)
 | 
						|
 | 
						|
        # Self Attention
 | 
						|
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
 | 
						|
            hidden_states=hidden_states,
 | 
						|
            attention_mask=attention_mask,
 | 
						|
            position_ids=position_ids,
 | 
						|
            past_key_value=past_key_value,
 | 
						|
            output_attentions=output_attentions,
 | 
						|
            use_cache=use_cache,
 | 
						|
        )
 | 
						|
        hidden_states = residual + hidden_states
 | 
						|
 | 
						|
        # Fully Connected
 | 
						|
        residual = hidden_states
 | 
						|
        hidden_states = self.post_attention_layernorm(hidden_states)
 | 
						|
        hidden_states = self.mlp(hidden_states)
 | 
						|
        hidden_states = residual + hidden_states
 | 
						|
 | 
						|
        outputs = (hidden_states,)
 | 
						|
 | 
						|
        if output_attentions:
 | 
						|
            outputs += (self_attn_weights,)
 | 
						|
 | 
						|
        if use_cache:
 | 
						|
            outputs += (present_key_value,)
 | 
						|
 | 
						|
        return outputs
 | 
						|
 | 
						|
 | 
						|
INTERNLM_START_DOCSTRING = r"""
 | 
						|
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
 | 
						|
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
 | 
						|
    etc.)
 | 
						|
 | 
						|
    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
 | 
						|
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
 | 
						|
    and behavior.
 | 
						|
 | 
						|
    Parameters:
 | 
						|
        config ([`InternLMConfig`]):
 | 
						|
            Model configuration class with all the parameters of the model. Initializing with a config file does not
 | 
						|
            load the weights associated with the model, only the configuration. Check out the
 | 
						|
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@add_start_docstrings(
 | 
						|
    "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
 | 
						|
    INTERNLM_START_DOCSTRING,
 | 
						|
)
 | 
						|
class InternLMPreTrainedModel(PreTrainedModel):
 | 
						|
    config_class = InternLMConfig
 | 
						|
    base_model_prefix = "model"
 | 
						|
    supports_gradient_checkpointing = True
 | 
						|
    _no_split_modules = ["InternLMDecoderLayer"]
 | 
						|
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
 | 
						|
 | 
						|
    def _init_weights(self, module):
 | 
						|
        std = self.config.initializer_range
 | 
						|
        if isinstance(module, nn.Linear):
 | 
						|
            module.weight.data.normal_(mean=0.0, std=std)
 | 
						|
            if module.bias is not None:
 | 
						|
                module.bias.data.zero_()
 | 
						|
        elif isinstance(module, nn.Embedding):
 | 
						|
            module.weight.data.normal_(mean=0.0, std=std)
 | 
						|
            if module.padding_idx is not None:
 | 
						|
                module.weight.data[module.padding_idx].zero_()
 | 
						|
 | 
						|
    def _set_gradient_checkpointing(self, module, value=False):
 | 
						|
        if isinstance(module, InternLMModel):
 | 
						|
            module.gradient_checkpointing = value
 | 
						|
 | 
						|
 | 
						|
INTERNLM_INPUTS_DOCSTRING = r"""
 | 
						|
    Args:
 | 
						|
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
 | 
						|
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
 | 
						|
            it.
 | 
						|
 | 
						|
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
 | 
						|
            [`PreTrainedTokenizer.__call__`] for details.
 | 
						|
 | 
						|
            [What are input IDs?](../glossary#input-ids)
 | 
						|
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
 | 
						|
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
 | 
						|
 | 
						|
            - 1 for tokens that are **not masked**,
 | 
						|
            - 0 for tokens that are **masked**.
 | 
						|
 | 
						|
            [What are attention masks?](../glossary#attention-mask)
 | 
						|
 | 
						|
            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
 | 
						|
            [`PreTrainedTokenizer.__call__`] for details.
 | 
						|
 | 
						|
            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
 | 
						|
            `past_key_values`).
 | 
						|
 | 
						|
            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
 | 
						|
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
 | 
						|
            information on the default strategy.
 | 
						|
 | 
						|
            - 1 indicates the head is **not masked**,
 | 
						|
            - 0 indicates the head is **masked**.
 | 
						|
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
 | 
						|
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
 | 
						|
            config.n_positions - 1]`.
 | 
						|
 | 
						|
            [What are position IDs?](../glossary#position-ids)
 | 
						|
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
 | 
						|
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
 | 
						|
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
 | 
						|
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
 | 
						|
 | 
						|
            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
 | 
						|
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
 | 
						|
 | 
						|
            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
 | 
						|
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
 | 
						|
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
 | 
						|
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
 | 
						|
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
 | 
						|
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
 | 
						|
            model's internal embedding lookup matrix.
 | 
						|
        use_cache (`bool`, *optional*):
 | 
						|
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
 | 
						|
            `past_key_values`).
 | 
						|
        output_attentions (`bool`, *optional*):
 | 
						|
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
 | 
						|
            tensors for more detail.
 | 
						|
        output_hidden_states (`bool`, *optional*):
 | 
						|
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
 | 
						|
            more detail.
 | 
						|
        return_dict (`bool`, *optional*):
 | 
						|
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@add_start_docstrings(
 | 
						|
    "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
 | 
						|
    INTERNLM_START_DOCSTRING,
 | 
						|
)
 | 
						|
class InternLMModel(InternLMPreTrainedModel):
 | 
						|
    """
 | 
						|
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
 | 
						|
 | 
						|
    Args:
 | 
						|
        config: InternLMConfig
 | 
						|
    """
 | 
						|
 | 
						|
    _auto_class = "AutoModel"
 | 
						|
 | 
						|
    def __init__(self, config: InternLMConfig):
 | 
						|
        super().__init__(config)
 | 
						|
        self.padding_idx = config.pad_token_id
 | 
						|
        self.vocab_size = config.vocab_size
 | 
						|
 | 
						|
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
 | 
						|
        self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
 | 
						|
        self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | 
						|
 | 
						|
        self.gradient_checkpointing = False
 | 
						|
        # Initialize weights and apply final processing
 | 
						|
        self.post_init()
 | 
						|
 | 
						|
    def get_input_embeddings(self):
 | 
						|
        return self.embed_tokens
 | 
						|
 | 
						|
    def set_input_embeddings(self, value):
 | 
						|
        self.embed_tokens = value
 | 
						|
 | 
						|
    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
 | 
						|
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
 | 
						|
        # create causal mask
 | 
						|
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
						|
        combined_attention_mask = None
 | 
						|
        if input_shape[-1] > 1:
 | 
						|
            combined_attention_mask = _make_causal_mask(
 | 
						|
                input_shape,
 | 
						|
                inputs_embeds.dtype,
 | 
						|
                device=inputs_embeds.device,
 | 
						|
                past_key_values_length=past_key_values_length,
 | 
						|
            )
 | 
						|
 | 
						|
        if attention_mask is not None:
 | 
						|
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
 | 
						|
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
 | 
						|
                inputs_embeds.device
 | 
						|
            )
 | 
						|
            combined_attention_mask = (
 | 
						|
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
 | 
						|
            )
 | 
						|
 | 
						|
        return combined_attention_mask
 | 
						|
 | 
						|
    @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        input_ids: torch.LongTensor = None,
 | 
						|
        attention_mask: Optional[torch.Tensor] = None,
 | 
						|
        position_ids: Optional[torch.LongTensor] = None,
 | 
						|
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        use_cache: Optional[bool] = None,
 | 
						|
        output_attentions: Optional[bool] = None,
 | 
						|
        output_hidden_states: Optional[bool] = None,
 | 
						|
        return_dict: Optional[bool] = None,
 | 
						|
    ) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
						|
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 | 
						|
        output_hidden_states = (
 | 
						|
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
 | 
						|
        )
 | 
						|
        use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
						|
 | 
						|
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
						|
 | 
						|
        # retrieve input_ids and inputs_embeds
 | 
						|
        if input_ids is not None and inputs_embeds is not None:
 | 
						|
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
 | 
						|
        elif input_ids is not None:
 | 
						|
            batch_size, seq_length = input_ids.shape
 | 
						|
        elif inputs_embeds is not None:
 | 
						|
            batch_size, seq_length, _ = inputs_embeds.shape
 | 
						|
        else:
 | 
						|
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
 | 
						|
 | 
						|
        seq_length_with_past = seq_length
 | 
						|
        past_key_values_length = 0
 | 
						|
 | 
						|
        if past_key_values is not None:
 | 
						|
            past_key_values_length = past_key_values[0][0].shape[2]
 | 
						|
            seq_length_with_past = seq_length_with_past + past_key_values_length
 | 
						|
 | 
						|
        if position_ids is None:
 | 
						|
            device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
						|
            position_ids = torch.arange(
 | 
						|
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
 | 
						|
            )
 | 
						|
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
						|
        else:
 | 
						|
            position_ids = position_ids.view(-1, seq_length).long()
 | 
						|
 | 
						|
        if inputs_embeds is None:
 | 
						|
            inputs_embeds = self.embed_tokens(input_ids)
 | 
						|
        # embed positions
 | 
						|
        if attention_mask is None:
 | 
						|
            attention_mask = torch.ones(
 | 
						|
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
 | 
						|
            )
 | 
						|
        attention_mask = self._prepare_decoder_attention_mask(
 | 
						|
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
 | 
						|
        )
 | 
						|
 | 
						|
        hidden_states = inputs_embeds
 | 
						|
 | 
						|
        if self.gradient_checkpointing and self.training:
 | 
						|
            if use_cache:
 | 
						|
                logger.warning_once(
 | 
						|
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
 | 
						|
                )
 | 
						|
                use_cache = False
 | 
						|
 | 
						|
        # decoder layers
 | 
						|
        all_hidden_states = () if output_hidden_states else None
 | 
						|
        all_self_attns = () if output_attentions else None
 | 
						|
        next_decoder_cache = () if use_cache else None
 | 
						|
 | 
						|
        for idx, decoder_layer in enumerate(self.layers):
 | 
						|
            if output_hidden_states:
 | 
						|
                all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
            past_key_value = past_key_values[idx] if past_key_values is not None else None
 | 
						|
 | 
						|
            if self.gradient_checkpointing and self.training:
 | 
						|
 | 
						|
                def create_custom_forward(module):
 | 
						|
                    def custom_forward(*inputs):
 | 
						|
                        # None for past_key_value
 | 
						|
                        return module(*inputs, output_attentions, None)
 | 
						|
 | 
						|
                    return custom_forward
 | 
						|
 | 
						|
                layer_outputs = torch.utils.checkpoint.checkpoint(
 | 
						|
                    create_custom_forward(decoder_layer),
 | 
						|
                    hidden_states,
 | 
						|
                    attention_mask,
 | 
						|
                    position_ids,
 | 
						|
                    None,
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                layer_outputs = decoder_layer(
 | 
						|
                    hidden_states,
 | 
						|
                    attention_mask=attention_mask,
 | 
						|
                    position_ids=position_ids,
 | 
						|
                    past_key_value=past_key_value,
 | 
						|
                    output_attentions=output_attentions,
 | 
						|
                    use_cache=use_cache,
 | 
						|
                )
 | 
						|
 | 
						|
            hidden_states = layer_outputs[0]
 | 
						|
 | 
						|
            if use_cache:
 | 
						|
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
 | 
						|
 | 
						|
            if output_attentions:
 | 
						|
                all_self_attns += (layer_outputs[1],)
 | 
						|
 | 
						|
        hidden_states = self.norm(hidden_states)
 | 
						|
 | 
						|
        # add hidden states from the last decoder layer
 | 
						|
        if output_hidden_states:
 | 
						|
            all_hidden_states += (hidden_states,)
 | 
						|
 | 
						|
        next_cache = next_decoder_cache if use_cache else None
 | 
						|
        if not return_dict:
 | 
						|
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
 | 
						|
        return BaseModelOutputWithPast(
 | 
						|
            last_hidden_state=hidden_states,
 | 
						|
            past_key_values=next_cache,
 | 
						|
            hidden_states=all_hidden_states,
 | 
						|
            attentions=all_self_attns,
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class InternLMForCausalLM(InternLMPreTrainedModel):
 | 
						|
    _auto_class = "AutoModelForCausalLM"
 | 
						|
 | 
						|
    def __init__(self, config):
 | 
						|
        super().__init__(config)
 | 
						|
        self.model = InternLMModel(config)
 | 
						|
 | 
						|
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
 | 
						|
 | 
						|
        # Initialize weights and apply final processing
 | 
						|
        self.post_init()
 | 
						|
 | 
						|
    def get_input_embeddings(self):
 | 
						|
        return self.model.embed_tokens
 | 
						|
 | 
						|
    def set_input_embeddings(self, value):
 | 
						|
        self.model.embed_tokens = value
 | 
						|
 | 
						|
    def get_output_embeddings(self):
 | 
						|
        return self.lm_head
 | 
						|
 | 
						|
    def set_output_embeddings(self, new_embeddings):
 | 
						|
        self.lm_head = new_embeddings
 | 
						|
 | 
						|
    def set_decoder(self, decoder):
 | 
						|
        self.model = decoder
 | 
						|
 | 
						|
    def get_decoder(self):
 | 
						|
        return self.model
 | 
						|
 | 
						|
    @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
 | 
						|
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        input_ids: torch.LongTensor = None,
 | 
						|
        attention_mask: Optional[torch.Tensor] = None,
 | 
						|
        position_ids: Optional[torch.LongTensor] = None,
 | 
						|
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        labels: Optional[torch.LongTensor] = None,
 | 
						|
        use_cache: Optional[bool] = None,
 | 
						|
        output_attentions: Optional[bool] = None,
 | 
						|
        output_hidden_states: Optional[bool] = None,
 | 
						|
        return_dict: Optional[bool] = None,
 | 
						|
    ) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
						|
        r"""
 | 
						|
        Args:
 | 
						|
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
 | 
						|
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
 | 
						|
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
 | 
						|
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
 | 
						|
 | 
						|
        Returns:
 | 
						|
 | 
						|
        Example:
 | 
						|
 | 
						|
        ```python
 | 
						|
        >>> from transformers import AutoTokenizer, InternLMForCausalLM
 | 
						|
 | 
						|
        >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
 | 
						|
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
 | 
						|
 | 
						|
        >>> prompt = "Hey, are you consciours? Can you talk to me?"
 | 
						|
        >>> inputs = tokenizer(prompt, return_tensors="pt")
 | 
						|
 | 
						|
        >>> # Generate
 | 
						|
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
 | 
						|
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
 | 
						|
        "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
 | 
						|
        ```"""
 | 
						|
 | 
						|
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 | 
						|
        output_hidden_states = (
 | 
						|
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
 | 
						|
        )
 | 
						|
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
						|
 | 
						|
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
 | 
						|
        outputs = self.model(
 | 
						|
            input_ids=input_ids,
 | 
						|
            attention_mask=attention_mask,
 | 
						|
            position_ids=position_ids,
 | 
						|
            past_key_values=past_key_values,
 | 
						|
            inputs_embeds=inputs_embeds,
 | 
						|
            use_cache=use_cache,
 | 
						|
            output_attentions=output_attentions,
 | 
						|
            output_hidden_states=output_hidden_states,
 | 
						|
            return_dict=return_dict,
 | 
						|
        )
 | 
						|
 | 
						|
        hidden_states = outputs[0]
 | 
						|
        logits = self.lm_head(hidden_states)
 | 
						|
 | 
						|
        loss = None
 | 
						|
        if labels is not None:
 | 
						|
            # Shift so that tokens < n predict n
 | 
						|
            shift_logits = logits[..., :-1, :].contiguous()
 | 
						|
            shift_labels = labels[..., 1:].contiguous()
 | 
						|
            # Flatten the tokens
 | 
						|
            loss_fct = CrossEntropyLoss()
 | 
						|
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
 | 
						|
            shift_labels = shift_labels.view(-1)
 | 
						|
            # Enable model parallelism
 | 
						|
            shift_labels = shift_labels.to(shift_logits.device)
 | 
						|
            loss = loss_fct(shift_logits, shift_labels)
 | 
						|
 | 
						|
        if not return_dict:
 | 
						|
            output = (logits,) + outputs[1:]
 | 
						|
            return (loss,) + output if loss is not None else output
 | 
						|
 | 
						|
        return CausalLMOutputWithPast(
 | 
						|
            loss=loss,
 | 
						|
            logits=logits,
 | 
						|
            past_key_values=outputs.past_key_values,
 | 
						|
            hidden_states=outputs.hidden_states,
 | 
						|
            attentions=outputs.attentions,
 | 
						|
        )
 | 
						|
 | 
						|
    def prepare_inputs_for_generation(
 | 
						|
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
 | 
						|
    ):
 | 
						|
        if past_key_values:
 | 
						|
            input_ids = input_ids[:, -1:]
 | 
						|
 | 
						|
        position_ids = kwargs.get("position_ids", None)
 | 
						|
        if attention_mask is not None and position_ids is None:
 | 
						|
            # create position_ids on the fly for batch generation
 | 
						|
            position_ids = attention_mask.long().cumsum(-1) - 1
 | 
						|
            position_ids.masked_fill_(attention_mask == 0, 1)
 | 
						|
            if past_key_values:
 | 
						|
                position_ids = position_ids[:, -1].unsqueeze(-1)
 | 
						|
 | 
						|
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
 | 
						|
        if inputs_embeds is not None and past_key_values is None:
 | 
						|
            model_inputs = {"inputs_embeds": inputs_embeds}
 | 
						|
        else:
 | 
						|
            model_inputs = {"input_ids": input_ids}
 | 
						|
 | 
						|
        model_inputs.update(
 | 
						|
            {
 | 
						|
                "position_ids": position_ids,
 | 
						|
                "past_key_values": past_key_values,
 | 
						|
                "use_cache": kwargs.get("use_cache"),
 | 
						|
                "attention_mask": attention_mask,
 | 
						|
            }
 | 
						|
        )
 | 
						|
        return model_inputs
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _reorder_cache(past_key_values, beam_idx):
 | 
						|
        reordered_past = ()
 | 
						|
        for layer_past in past_key_values:
 | 
						|
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
 | 
						|
        return reordered_past
 | 
						|
 | 
						|
    def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
 | 
						|
        prompt = ""
 | 
						|
        for record in history:
 | 
						|
            prompt += f"""<s><|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
 | 
						|
        if len(prompt) == 0:
 | 
						|
            prompt += "<s>"
 | 
						|
        prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
 | 
						|
        return tokenizer([prompt], return_tensors="pt")
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def chat(
 | 
						|
        self,
 | 
						|
        tokenizer,
 | 
						|
        query: str,
 | 
						|
        history: List[Tuple[str, str]] = [],
 | 
						|
        streamer: Optional[BaseStreamer] = None,
 | 
						|
        max_new_tokens: int = 1024,
 | 
						|
        do_sample: bool = True,
 | 
						|
        temperature: float = 0.8,
 | 
						|
        top_p: float = 0.8,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        inputs = self.build_inputs(tokenizer, query, history)
 | 
						|
        inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
 | 
						|
        outputs = self.generate(
 | 
						|
            **inputs,
 | 
						|
            streamer=streamer,
 | 
						|
            max_new_tokens=max_new_tokens,
 | 
						|
            do_sample=do_sample,
 | 
						|
            temperature=temperature,
 | 
						|
            top_p=top_p,
 | 
						|
            **kwargs,
 | 
						|
        )
 | 
						|
        outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
 | 
						|
        response = tokenizer.decode(outputs, skip_special_tokens=True)
 | 
						|
        response = response.split("<eoa>")[0]
 | 
						|
        history = history + [(query, response)]
 | 
						|
        return response, history
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    def stream_chat(
 | 
						|
        self,
 | 
						|
        tokenizer,
 | 
						|
        query: str,
 | 
						|
        history: List[Tuple[str, str]] = [],
 | 
						|
        max_new_tokens: int = 1024,
 | 
						|
        do_sample: bool = True,
 | 
						|
        temperature: float = 0.8,
 | 
						|
        top_p: float = 0.8,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Return a generator in format: (response, history)
 | 
						|
        Eg.
 | 
						|
        ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
 | 
						|
        ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
 | 
						|
        """
 | 
						|
 | 
						|
        response_queue = queue.Queue(maxsize=20)
 | 
						|
 | 
						|
        class ChatStreamer(BaseStreamer):
 | 
						|
            def __init__(self, tokenizer) -> None:
 | 
						|
                super().__init__()
 | 
						|
                self.tokenizer = tokenizer
 | 
						|
                self.queue = response_queue
 | 
						|
                self.query = query
 | 
						|
                self.history = history
 | 
						|
                self.response = ""
 | 
						|
                self.received_inputs = False
 | 
						|
                self.queue.put((self.response, history + [(self.query, self.response)]))
 | 
						|
 | 
						|
            def put(self, value):
 | 
						|
                if len(value.shape) > 1 and value.shape[0] > 1:
 | 
						|
                    raise ValueError("ChatStreamer only supports batch size 1")
 | 
						|
                elif len(value.shape) > 1:
 | 
						|
                    value = value[0]
 | 
						|
 | 
						|
                if not self.received_inputs:
 | 
						|
                    # The first received value is input_ids, ignore here
 | 
						|
                    self.received_inputs = True
 | 
						|
                    return
 | 
						|
 | 
						|
                token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
 | 
						|
                if token.strip() != "<eoa>":
 | 
						|
                    self.response = self.response + token
 | 
						|
                    history = self.history + [(self.query, self.response)]
 | 
						|
                    self.queue.put((self.response, history))
 | 
						|
 | 
						|
            def end(self):
 | 
						|
                self.queue.put(None)
 | 
						|
 | 
						|
        def stream_producer():
 | 
						|
            return self.chat(
 | 
						|
                tokenizer=tokenizer,
 | 
						|
                query=query,
 | 
						|
                streamer=ChatStreamer(tokenizer=tokenizer),
 | 
						|
                history=history,
 | 
						|
                max_new_tokens=max_new_tokens,
 | 
						|
                do_sample=do_sample,
 | 
						|
                temperature=temperature,
 | 
						|
                top_p=top_p,
 | 
						|
                **kwargs,
 | 
						|
            )
 | 
						|
 | 
						|
        def consumer():
 | 
						|
            producer = threading.Thread(target=stream_producer)
 | 
						|
            producer.start()
 | 
						|
            while True:
 | 
						|
                res = response_queue.get()
 | 
						|
                if res is not None:
 | 
						|
                    return
 | 
						|
                yield res
 | 
						|
 | 
						|
        return consumer()
 | 
						|
 | 
						|
 | 
						|
@add_start_docstrings(
 | 
						|
    """
 | 
						|
    The InternLM Model transformer with a sequence classification head on top (linear layer).
 | 
						|
 | 
						|
    [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
 | 
						|
    (e.g. GPT-2) do.
 | 
						|
 | 
						|
    Since it does classification on the last token, it requires to know the position of the last token. If a
 | 
						|
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
 | 
						|
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
 | 
						|
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
 | 
						|
    each row of the batch).
 | 
						|
    """,
 | 
						|
    INTERNLM_START_DOCSTRING,
 | 
						|
)
 | 
						|
class InternLMForSequenceClassification(InternLMPreTrainedModel):
 | 
						|
    _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
 | 
						|
 | 
						|
    def __init__(self, config):
 | 
						|
        super().__init__(config)
 | 
						|
        self.num_labels = config.num_labels
 | 
						|
        self.model = InternLMModel(config)
 | 
						|
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
 | 
						|
 | 
						|
        # Initialize weights and apply final processing
 | 
						|
        self.post_init()
 | 
						|
 | 
						|
    def get_input_embeddings(self):
 | 
						|
        return self.model.embed_tokens
 | 
						|
 | 
						|
    def set_input_embeddings(self, value):
 | 
						|
        self.model.embed_tokens = value
 | 
						|
 | 
						|
    @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        input_ids: torch.LongTensor = None,
 | 
						|
        attention_mask: Optional[torch.Tensor] = None,
 | 
						|
        position_ids: Optional[torch.LongTensor] = None,
 | 
						|
        past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
						|
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        labels: Optional[torch.LongTensor] = None,
 | 
						|
        use_cache: Optional[bool] = None,
 | 
						|
        output_attentions: Optional[bool] = None,
 | 
						|
        output_hidden_states: Optional[bool] = None,
 | 
						|
        return_dict: Optional[bool] = None,
 | 
						|
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
 | 
						|
        r"""
 | 
						|
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
 | 
						|
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
 | 
						|
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
 | 
						|
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
 | 
						|
        """
 | 
						|
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
						|
 | 
						|
        transformer_outputs = self.model(
 | 
						|
            input_ids,
 | 
						|
            attention_mask=attention_mask,
 | 
						|
            position_ids=position_ids,
 | 
						|
            past_key_values=past_key_values,
 | 
						|
            inputs_embeds=inputs_embeds,
 | 
						|
            use_cache=use_cache,
 | 
						|
            output_attentions=output_attentions,
 | 
						|
            output_hidden_states=output_hidden_states,
 | 
						|
            return_dict=return_dict,
 | 
						|
        )
 | 
						|
        hidden_states = transformer_outputs[0]
 | 
						|
        logits = self.score(hidden_states)
 | 
						|
 | 
						|
        if input_ids is not None:
 | 
						|
            batch_size = input_ids.shape[0]
 | 
						|
        else:
 | 
						|
            batch_size = inputs_embeds.shape[0]
 | 
						|
 | 
						|
        if self.config.pad_token_id is None and batch_size != 1:
 | 
						|
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
 | 
						|
        if self.config.pad_token_id is None:
 | 
						|
            sequence_lengths = -1
 | 
						|
        else:
 | 
						|
            if input_ids is not None:
 | 
						|
                sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
 | 
						|
            else:
 | 
						|
                sequence_lengths = -1
 | 
						|
 | 
						|
        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
 | 
						|
 | 
						|
        loss = None
 | 
						|
        if labels is not None:
 | 
						|
            labels = labels.to(logits.device)
 | 
						|
            if self.config.problem_type is None:
 | 
						|
                if self.num_labels == 1:
 | 
						|
                    self.config.problem_type = "regression"
 | 
						|
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
 | 
						|
                    self.config.problem_type = "single_label_classification"
 | 
						|
                else:
 | 
						|
                    self.config.problem_type = "multi_label_classification"
 | 
						|
 | 
						|
            if self.config.problem_type == "regression":
 | 
						|
                loss_fct = MSELoss()
 | 
						|
                if self.num_labels == 1:
 | 
						|
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
 | 
						|
                else:
 | 
						|
                    loss = loss_fct(pooled_logits, labels)
 | 
						|
            elif self.config.problem_type == "single_label_classification":
 | 
						|
                loss_fct = CrossEntropyLoss()
 | 
						|
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
 | 
						|
            elif self.config.problem_type == "multi_label_classification":
 | 
						|
                loss_fct = BCEWithLogitsLoss()
 | 
						|
                loss = loss_fct(pooled_logits, labels)
 | 
						|
        if not return_dict:
 | 
						|
            output = (pooled_logits,) + transformer_outputs[1:]
 | 
						|
            return ((loss,) + output) if loss is not None else output
 | 
						|
 | 
						|
        return SequenceClassifierOutputWithPast(
 | 
						|
            loss=loss,
 | 
						|
            logits=pooled_logits,
 | 
						|
            past_key_values=transformer_outputs.past_key_values,
 | 
						|
            hidden_states=transformer_outputs.hidden_states,
 | 
						|
            attentions=transformer_outputs.attentions,
 | 
						|
        )
 |