InternLM/internlm/model/moe.py

101 lines
4.1 KiB
Python

import torch
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.model.linear import FeedForward
from internlm.utils.logger import get_logger
from internlm.utils.registry import MODEL_INITIALIZER
# global llm logger
logger = get_logger(__file__)
class MoE(torch.nn.Module):
"""Initialize an MoE layer.
Arguments:
hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.
num_experts (int, optional): default=1, the total number of experts per layer.
ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.
k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.
capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.
eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.
min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.
noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample'
or 'None'.
using_default_moe (bool, optional): default=True, whether to use the default MoE layer.
drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to
infinite capacity).
use_rts (bool, optional): default=True, whether to use Random Token Selection.
moe_use_residual (bool, optional): default=False, make this MoE layer a Residual MoE
(https://arxiv.org/abs/2201.05596) layer.
residual_mlp (torch.nn.Module, optional): default=None, the torch module that defines the residual MLP.
"""
def __init__(
self,
hidden_size,
num_experts=1,
ep_group=None,
ep_size=1,
device=None,
dtype=None,
):
super().__init__()
if not hasattr(gpc.config, "moe"):
gpc.config.moe = dict()
self.moe_layer = MODEL_INITIALIZER.get_module(module_name=gpc.config.model.moe_type)(
hidden_size=hidden_size,
num_experts=num_experts,
ep_group=ep_group,
ep_size=ep_size,
device=device,
dtype=dtype,
**(gpc.config.moe)
)
# residual network, see https://arxiv.org/pdf/2201.05596.pdf, seems useful for convergence
self.use_residual = gpc.config.model.moe_use_residual
if self.use_residual:
self.residual_mlp = FeedForward(
hidden_size,
int(hidden_size * gpc.config.model.mlp_ratio),
out_features=hidden_size,
process_group=gpc.get_group(ParallelMode.TENSOR),
bias=False,
device=device,
dtype=dtype,
)
# coefficient is used for weighted sum of the output of expert and residual mlp
self.coefficient = torch.nn.Linear(hidden_size, 2)
def forward(self, hidden_states, used_token=None):
"""MoE forward
Arguments:
hidden_states (Tensor): input to the layer
used_token (Tensor, optional): default: None, mask only used tokens
Returns:
A tuple including output, gate loss, and expert count.
* output (Tensor): output of the model
* l_aux (Tensor): gate loss value
* exp_counts (int): expert count
"""
output = self.moe_layer(hidden_states, used_token)
if self.use_residual:
# Residual MoE
output_mlp = self.residual_mlp(hidden_states)
if isinstance(output_mlp, tuple):
output_mlp = output_mlp[0] # Ignore the bias term for now
coef = self.coefficient(hidden_states)
coef = torch.nn.functional.softmax(coef, dim=-1)
output = output * coef[..., 0:1] + output_mlp * coef[..., 1:]
return output, self.moe_layer.l_aux, self.moe_layer.exp_counts