InternLM/doc/code-docs/locales/en/LC_MESSAGES/training.po

162 lines
5.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# SOME DESCRIPTIVE TITLE.
# Copyright (C) 2023, InternLM Team
# This file is distributed under the same license as the InternLM package.
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
#
msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-14 12:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: en\n"
"Language-Team: en <LL@li.org>\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../source/training.rst:2
msgid "训练 API"
msgstr "Training API"
#: ../../source/training.rst:4
msgid ""
"InternLM 的训练 API 由 ``internlm.core.trainer.Trainer`` "
"管理。在定义了训练引擎和调度器之后,我们可以调用 Trainer API 来执行模型训练、评估、梯度清零和参数更新等。"
msgstr ""
"InternLM training API is managed in ``internlm.core.trainer.Trainer``. "
"After defining the training engine and runtime scheduler, we can call "
"training API to perform training, evaluation, zero gradients and "
"parameter update steps."
#: ../../source/training.rst:6
msgid "有关详细用法,请参阅 Trainer API 文档和示例。"
msgstr ""
"For detailed usage, please refer to Trainer API documentation and "
"examples."
#: internlm.core.trainer.Trainer:1 of
msgid ""
"This is a class tending for easy deployments of users' training and "
"evaluation instead of writing their own scripts."
msgstr ""
#: internlm.core.trainer.Trainer internlm.core.trainer.Trainer.execute_schedule
#: of
msgid "参数"
msgstr ""
#: internlm.core.trainer.Trainer:4 of
msgid "Engine responsible for the process function."
msgstr ""
#: internlm.core.trainer.Trainer:6 of
msgid "Runtime schedule. Defaults to None."
msgstr ""
#: internlm.core.trainer.Trainer.engine:1 of
msgid ""
"Returns the engine that responsible for managing the training and "
"evaluation process."
msgstr ""
#: internlm.core.trainer.Trainer.schedule:1 of
msgid "Returns the runtime scheduler."
msgstr ""
#: internlm.core.trainer.Trainer.uses_pipeline:1 of
msgid "Returns whether the pipeline parallel is used or not."
msgstr ""
#: internlm.core.trainer.Trainer.train:1 of
msgid "Sets the model to training mode."
msgstr ""
#: internlm.core.trainer.Trainer.eval:1 of
msgid "Sets the model to evaluation mode."
msgstr ""
#: internlm.core.trainer.Trainer.zero_grad:1 of
msgid "Sets the gradient of all parameters in the model to zero."
msgstr ""
#: internlm.core.trainer.Trainer.step:1 of
msgid "Executes the parameter update step."
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule:1 of
msgid ""
"Runs the forward, loss computation, and backward for the model. Returns a"
" tuple of (output, label, loss)."
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule:4 of
msgid "The data iterator."
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule:6 of
msgid "Additional keyword arguments."
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule of
msgid "返回"
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule:8 of
msgid "A tuple of (output, label, loss)."
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule of
msgid "返回类型"
msgstr ""
#: internlm.core.trainer.Trainer.execute_schedule:9 of
msgid "Tuple[:class:`torch.Tensor`]"
msgstr ""
#~ msgid "InternLM 的训练流程可以归纳为两个步骤:"
#~ msgstr "The training process of InternLM can be summarized into two steps: "
#~ msgid "初始化"
#~ msgstr "Initialization"
#~ msgid "初始化模型、优化器、数据加载器、Trainer生成不同种类的进程组为混合并行的迭代训练做准备。"
#~ msgstr ""
#~ "Initialize model, optimizer, dataloader, "
#~ "trainer, and create different types of"
#~ " process groups to prepare for "
#~ "iterative steps of hybrid parallel "
#~ "training. "
#~ msgid "初始化Logger、Checkpoint管理器、Monitor管理器、Profiler对迭代训练的过程观察、预警、记录。"
#~ msgstr ""
#~ "Initialize logger, checkpoint manager, monitor"
#~ " manager, and profiler to watch, "
#~ "alert, and record the iterative training"
#~ " steps. "
#~ msgid "迭代训练"
#~ msgstr "Iterative training steps"
#~ msgid "根据配置文件定义的张量并行、流水线并行、数据并行的大小,加载训练引擎和调度器进行混合并行训练。"
#~ msgstr ""
#~ "Load the training engine and scheduler"
#~ " for hybrid parallel training according "
#~ "to the configuration such as tensor "
#~ "parallel size, pipeline parallel size, "
#~ "and data parallel size. "
#~ msgid "在迭代训练中,调用 Trainer API 进行梯度置零,前向传播计算损失并反向传播,参数更新。"
#~ msgstr ""
#~ "In iterative training steps, the Trainer"
#~ " API is called to perform zero "
#~ "gradients, forward-loss-backward, and "
#~ "parameter update."
#~ msgid "InternLM训练流程图"
#~ msgstr "InternLM training process"