InternLM/internlm/solver/optimizer/utils.py

316 lines
11 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Dict, Optional
import torch
import torch.distributed as dist
from torch import Tensor
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.utils.logger import get_logger
logger = get_logger(__file__)
def flatten(input_):
return _flatten_dense_tensors(input_)
def unflatten(flat, tensors):
return _unflatten_dense_tensors(flat, tensors)
def get_grad_accumulate_object(tensor):
"""
Return the AccumulateGrad of the input tensor
"""
# grad_fn reference:
# https://discuss.pytorch.org/t/in-the-grad-fn-i-find-a-next-functions-but-i-dont-understand-the-meaning-of-the-attribute/24463
# expand_as reference: https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html#torch.Tensor.expand
#
# `next_functions` will return the backward graph where
# the first element is the AccumulateGrad of the leaf nodes.
# we want to get the AccumulateGrad of the input tensor instead of the leaf
# node in the whole computation graph.
# Therefore, we call expand_as to create a dummy graph
# where tensor_tmp and tensor indeed point to the same object.
# You can check this by print(tensor.data_ptr() == tensor_tmp.data_ptr())
tensor_tmp = tensor.expand_as(tensor)
grad_acc_obj = tensor_tmp.grad_fn.next_functions[0][0]
return grad_acc_obj
def split_half_float_double(tensor_list):
dtypes = ["torch.cuda.HalfTensor", "torch.cuda.FloatTensor", "torch.cuda.DoubleTensor", "torch.cuda.BFloat16Tensor"]
buckets = []
for _, dtype in enumerate(dtypes):
bucket = [t for t in tensor_list if t.type() == dtype]
if bucket:
buckets.append(bucket)
return buckets
def reduce_tensor(tensor, dtype=None, dst_rank=None, parallel_mode=ParallelMode.DATA):
"""
Reduce the tensor in the data parallel process group
:param tensor: A tensor object to reduce/all-reduce
:param dtype: The data type used in communication
:param dst_rank: The source rank for reduce. If dst_rank is None,
:param parallel_mode: Communication parallel mode
all-reduce will be used instead of reduce. Default is None.
:type tensor: torch.Tensor
:type dtype: torch.dtype, optional
:type dst_rank: int, optional
:type parallel_mode: ParallelMode, optional
"""
# use the original dtype
if dtype is None:
dtype = tensor.dtype
# cast the data to specified dtype for reduce/all-reduce
if tensor.dtype != dtype:
tensor_to_reduce = tensor.to(dtype)
else:
tensor_to_reduce = tensor
world_size = gpc.get_world_size(parallel_mode)
group = gpc.get_group(parallel_mode)
tensor_to_reduce.div_(world_size)
# if rank is None, all reduce will be used
# else, reduce is used
use_all_reduce = dst_rank is None
if use_all_reduce:
dist.all_reduce(tensor_to_reduce, group=group)
else:
ranks_in_group = gpc.get_ranks_in_group(parallel_mode)
global_rank = ranks_in_group[dst_rank]
dist.reduce(tensor=tensor_to_reduce, dst=global_rank, group=group)
# recover the original dtype
if tensor.dtype != dtype and tensor is not tensor_to_reduce:
local_rank = gpc.get_local_rank(parallel_mode)
if use_all_reduce or dst_rank == local_rank:
tensor.copy_(tensor_to_reduce)
return tensor
def has_inf_or_nan(tensor):
try:
# if tensor is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as tensor
# (which is true for some recent version of pytorch).
tensor_sum = float(tensor.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# tensor_sum = float(tensor.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if tensor_sum == float("inf") or tensor_sum == -float("inf"):
return True
return False
def release_param_grad(tensor_list):
for tensor in tensor_list:
tensor.grad = None
def sync_param(flat_tensor, tensor_list):
"""
Synchronize the flattened tensor and unflattened tensor list. When
a list of tensor are flattened with `torch._utils._unflatten_dense_tensors`,
a new tensor is created. Thus, the flat tensor and original tensor list do not
share the same memory space. This function will update the tensor list so that
they point to the same value.
:param flat_tensor: A flat tensor obtained by calling `torch._utils._unflatten_dense_tensors` on a tensor lsit
:param tensor_list: A list of tensors corresponding to the flattened tensor
:type flat_tensor: torch.Tensor
:type tensor_list: List[torch.Tensor]
"""
updated_params = unflatten(flat_tensor, tensor_list)
# update the tensor data
for p, q in zip(tensor_list, updated_params):
p.data = q.data
class BaseGradScaler(ABC):
"""A base class for the gradient scaler.
Args:
initial_scale (float): the initial loss scale
"""
def __init__(self, initial_scale: float):
assert initial_scale > 0
self._scale = torch.cuda.FloatTensor([initial_scale])
@property
def scale(self) -> Tensor:
"""Returns the loss scale."""
return self._scale
@property
def inv_scale(self) -> Tensor:
"""Returns the inverse of the loss scale."""
return self._scale.double().reciprocal().float()
def state_dict(self) -> Dict:
"""Returns the states of the gradient scaler as a dict object."""
state_dict = dict()
state_dict["scale"] = self.scale
return state_dict
def load_state_dict(self, state_dict: Dict) -> None:
"""Load the states of the gradient scaler from a dict object.
Args:
state_dict (dict): the states of the gradient scaler
"""
self._scale = state_dict["scale"]
@abstractmethod
def update(self, overflow: bool) -> None:
"""Update the loss scale.
Args:
overflow (bool): whether overflow occurs
"""
pass
class DynamicGradScaler(BaseGradScaler):
"""A gradient scaler which uses dynamic loss scale
Args:
initial_scale (float): the initial loss scale, defaults to 2**16
growth_factor (float): the multiplication factor for increasing loss scale, defaults to 2
backoff_factor (float): the multiplication factor for decreasing loss scale, defaults to 0.5
growth_interval (int): the number of steps to increase loss scale when no overflow occurs, defaults to 1000
min_scale (float): the minimum loss scale, defaults to None
max_scale (float): the maximum loss scale, defaults to None
hysteresis (int): the number of overflows before decreasing loss scale, defaults to 2
"""
def __init__(
self,
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
min_scale: Optional[float] = None,
max_scale: Optional[float] = None,
hysteresis: int = 2,
):
super().__init__(initial_scale)
if min_scale:
self._min_scale = torch.cuda.FloatTensor([min_scale])
else:
self._min_scale = None
if max_scale:
self._max_scale = torch.cuda.FloatTensor([max_scale])
else:
self._max_scale = None
self._growth_factor = growth_factor
self._backoff_factor = backoff_factor
self._growth_interval = growth_interval
self._growth_step = 0
self._hysteresis = hysteresis
self._hysteresis_step = 0
self._sanity_checks()
def _sanity_checks(self) -> None:
"""Check if the arguments are correct."""
if self._min_scale:
assert self._min_scale > 0, "The minimum gradient scale cannot be zero or negative"
if self._max_scale:
assert self._min_scale > 0, "The maximum gradient scale cannot be zero or negative"
assert self._growth_factor > 1, "The growth factor cannot be equal or smaller than 1"
assert self._backoff_factor < 1 and self._backoff_factor > 0, "The backoff factor must be between 0 and 1"
assert self._hysteresis >= 0, "The hysteresis cannot be negative"
def update(self, overflow: bool) -> None:
"""Update the loss scale.
Args:
overflow (bool): whether overflow occurs
"""
if overflow:
self._hysteresis_step += 1
self._growth_step = 0
if self._hysteresis_step >= self._hysteresis:
self._backoff_scale()
if gpc.is_rank_for_log():
logger.warning(f"Overflow occurs, the loss scale is adjusted to {self.scale.item()}")
else:
self._growth_step += 1
if self._growth_step == self._growth_interval:
self._growth_step = 0
self._hysteresis_step = 0
self._grow_scale()
if gpc.is_rank_for_log():
logger.warning(
f"No overflow for consecutive {self._growth_interval} steps, "
f"the loss scale is adjusted to {self.scale.item()}",
)
def _backoff_scale(self) -> None:
"""Decrease the loss scale"""
self._scale = self._scale * self._backoff_factor
if self._min_scale:
self._scale = torch.max(self._scale, self._min_scale)
def _grow_scale(self) -> None:
"""Increase the loss scale"""
self._scale = self._scale * self._growth_factor
if self._max_scale:
self._scale = torch.min(self._scale, self._max_scale)
def state_dict(self):
"""Returns the states of the gradient scaler as a dict object."""
state_dict = dict()
state_dict["_scale"] = self._scale.item()
state_dict["_growth_step"] = self._growth_step
state_dict["_hysteresis_step"] = self._hysteresis_step
return state_dict
def load_state_dict(self, state_dict):
"""Load the states of the gradient scaler from a dict object.
Args:
state_dict (dict): the states of the gradient scaler
"""
self._scale = self._scale.fill_(state_dict["_scale"])
self._growth_step = state_dict["_growth_step"]
self._hysteresis_step = state_dict["_hysteresis_step"]