InternLM/internlm/model/linear.py

177 lines
7.2 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Optional
import torch
import torch.nn.functional as F
from flash_attn.ops.fused_dense import (
ColumnParallelLinear,
RowParallelLinear,
fused_dense_func,
)
from torch import nn
from internlm.core.context import IS_TENSOR_PARALLEL, ParallelMode
from internlm.core.context import global_context as gpc
class ScaleColumnParallelLinear(nn.Linear):
"""
ScaleColumnParallelLinear.
Args:
in_features (int): size of each input sample
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
sequence_parallel (bool): If sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
If not, then the input is already gathered.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
weight_scale (int): For training stability. 1 by default.
"""
def __init__(
self,
in_features: int,
out_features: int,
process_group: Optional[torch.distributed.ProcessGroup],
bias: bool = True,
sequence_parallel: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
weight_scale: int = 1,
) -> None:
world_size = torch.distributed.get_world_size(process_group)
if out_features % world_size != 0:
raise ValueError(f"out_features ({out_features}) must be divisible by " f"world_size ({world_size})")
super().__init__(in_features, out_features // world_size, bias=bias, device=device, dtype=dtype)
self.process_group = process_group
self.sequence_parallel = sequence_parallel
self.weight_scale = weight_scale
def forward(self, input): # pylint: disable=W0622
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
if self.weight_scale != 1:
weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach()
else:
weight = self.weight
return fused_dense_func(
input, weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel
)
class RewardModelLinear(ScaleColumnParallelLinear):
"""
RewardModelLinear.
Args:
in_features (int): size of each input sample
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
sequence_parallel (bool): If sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
If not, then the input is already gathered.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
weight_scale (int): For training stability. 1 by default.
"""
def __init__(
self,
in_features: int,
out_features: int,
process_group: Optional[torch.distributed.ProcessGroup],
bias: bool = True,
sequence_parallel: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
weight_scale: int = 1,
) -> None:
super().__init__(in_features, out_features, process_group, bias, sequence_parallel, device, dtype, weight_scale)
torch.distributed.broadcast(self.weight, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], process_group)
if bias:
torch.distributed.broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.TENSOR)[0], process_group)
def forward(self, input): # pylint: disable=W0622
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
if self.weight_scale != 1:
weight = self.weight * self.weight_scale + (1 - self.weight_scale) * self.weight.detach()
else:
weight = self.weight
return fused_dense_func(
input, weight, self.bias, process_group=self.process_group, sequence_parallel=self.sequence_parallel
)
class FeedForward(nn.Module):
"""
FeedForward.
Args:
in_features (int): size of each input sample
hidden_features (int): size of hidden state of FFN
out_features (int): size of each output sample
process_group (Optional[torch.distributed.ProcessGroup]): The group of the current device for `parallel_mode`.
bias (bool): Whether the bias is needed for linears. True by default. But it is typically set to False
in the config.
device (Optional[Union[str, torch.device]]): The device will be used.
dtype (Optional[torch.dtype]): The type of data.
multiple_of (int): For efficient training. Reset the size of hidden feature. 256 by default.
"""
def __init__(
self,
in_features: int,
hidden_features: int,
out_features: int = None,
process_group: Optional[torch.distributed.ProcessGroup] = None,
bias: bool = True,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
multiple_of: int = 256,
):
super().__init__()
hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of)
self.w1 = ColumnParallelLinear(
in_features,
hidden_features,
process_group,
bias,
sequence_parallel=False,
device=device,
dtype=dtype,
)
self.w2 = ColumnParallelLinear(
in_features, hidden_features, process_group, bias, sequence_parallel=False, device=device, dtype=dtype
)
self.w3 = RowParallelLinear(
hidden_features,
out_features,
process_group,
bias=bias,
sequence_parallel=False,
device=device,
dtype=dtype,
)
# need to assign tp attribute so that colossalai know it is tensor parallel module
if gpc.get_world_size(ParallelMode.TENSOR) > 1:
for name in ["w1", "w2", "w3"]:
for param in getattr(self, name).parameters():
setattr(param, IS_TENSOR_PARALLEL, True)
def forward(self, x):
out = self.w3(F.silu(self.w1(x)) * self.w2(x))
return out