mirror of https://github.com/InternLM/InternLM
136 lines
5.8 KiB
Python
136 lines
5.8 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import json
|
|
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
class WarmupScheduler(_LRScheduler):
|
|
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies
|
|
the specific scheduler (For example: ReduceLROnPlateau).
|
|
|
|
Args:
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler.
|
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
|
"""
|
|
|
|
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
|
|
self.warmup_epochs = int(warmup_epochs)
|
|
self.after_scheduler = after_scheduler
|
|
self.finished = False
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def state_dict(self):
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
|
|
if isinstance(state_dict["after_scheduler"], (_LRScheduler, _CosineAnnealingLR)):
|
|
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
|
|
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
|
|
del state_dict["after_scheduler"]
|
|
else:
|
|
raise NotImplementedError()
|
|
return state_dict
|
|
|
|
def load_state_dict(self, state_dict):
|
|
# state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
|
for key in list(self.__dict__.keys()):
|
|
if key in state_dict:
|
|
self.__dict__[key] = state_dict[key]
|
|
if isinstance(self.after_scheduler, (_LRScheduler, _CosineAnnealingLR)):
|
|
assert type(self.after_scheduler).__name__ == state_dict["after_scheduler_type"]
|
|
# state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
|
self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"])
|
|
# del state_dict['after_scheduler']
|
|
else:
|
|
raise NotImplementedError()
|
|
return state_dict
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch >= self.warmup_epochs:
|
|
if not self.finished:
|
|
self.after_scheduler.base_lrs = self.base_lrs
|
|
self.finished = True
|
|
return self.after_scheduler.get_lr()
|
|
|
|
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
|
|
|
|
def step(self, epoch=None):
|
|
if self.finished:
|
|
if epoch is None:
|
|
self.after_scheduler.step(None)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
self.after_scheduler.step(epoch - self.warmup_epochs)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
return super().step(epoch)
|
|
|
|
|
|
class CosineAnnealingWarmupLR(WarmupScheduler):
|
|
"""Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied.
|
|
|
|
Args:
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
total_steps (int): Number of total training steps.
|
|
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
|
|
eta_min (int, optional): Minimum learning rate, defaults to 0.
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
|
"""
|
|
|
|
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: float = 0.0, last_epoch: int = -1):
|
|
base_scheduler = _CosineAnnealingLR(
|
|
optimizer, total_steps - warmup_steps, eta_min=eta_min, last_epoch=last_epoch
|
|
)
|
|
super().__init__(optimizer, warmup_steps, base_scheduler)
|
|
|
|
|
|
class FineTuneCosineAnnealingWarmupLR(CosineAnnealingWarmupLR):
|
|
"""
|
|
FineTune Cosine Annealing Warmup LR.
|
|
|
|
Args:
|
|
optimizer: The optimizer object.
|
|
total_steps (int): The number of total steps.
|
|
init_steps (int): The number of init steps, default is 0.
|
|
warmup_steps (int): The number of warm up steps, default is 0.
|
|
eta_min (float): The minimum learning rate, default is 0.0.
|
|
last_epoch: Last epoch, default is -1.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
total_steps: int,
|
|
init_steps: int = 0,
|
|
warmup_ratio: float = 0.0,
|
|
eta_min: float = 0.0,
|
|
last_epoch: int = -1,
|
|
):
|
|
self._init_steps = init_steps
|
|
self._warmup_steps = int(total_steps * warmup_ratio)
|
|
# Use this value to calculate the lr of warmup, because warmup_epochs = init_steps + warmup_steps
|
|
super().__init__(optimizer, total_steps, self._warmup_steps + init_steps, eta_min, last_epoch)
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch >= self.warmup_epochs:
|
|
if not self.finished: # pylint: disable=E0203
|
|
# This True switch is to avoid warning when the warmup reaches the preset value switch
|
|
self.after_scheduler._get_lr_called_within_step = True
|
|
self.after_scheduler.base_lrs = self.base_lrs
|
|
self.finished = True
|
|
return self.after_scheduler.get_lr()
|
|
|
|
elif self.last_epoch >= self._init_steps:
|
|
return [(self.last_epoch + 1 - self._init_steps) / self._warmup_steps * lr for lr in self.base_lrs]
|
|
else:
|
|
return [0 for lr in self.base_lrs]
|
|
|
|
def __str__(self):
|
|
return json.dumps(self.state_dict(), indent=4, sort_keys=True)
|