InternLM/internlm/solver/lr_scheduler.py

136 lines
5.8 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import json
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
from torch.optim.lr_scheduler import _LRScheduler
class WarmupScheduler(_LRScheduler):
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies
the specific scheduler (For example: ReduceLROnPlateau).
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler.
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
self.warmup_epochs = int(warmup_epochs)
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
def state_dict(self):
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"}
if isinstance(state_dict["after_scheduler"], (_LRScheduler, _CosineAnnealingLR)):
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict()
del state_dict["after_scheduler"]
else:
raise NotImplementedError()
return state_dict
def load_state_dict(self, state_dict):
# state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
for key in list(self.__dict__.keys()):
if key in state_dict:
self.__dict__[key] = state_dict[key]
if isinstance(self.after_scheduler, (_LRScheduler, _CosineAnnealingLR)):
assert type(self.after_scheduler).__name__ == state_dict["after_scheduler_type"]
# state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"])
# del state_dict['after_scheduler']
else:
raise NotImplementedError()
return state_dict
def get_lr(self):
if self.last_epoch >= self.warmup_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
self.finished = True
return self.after_scheduler.get_lr()
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
def step(self, epoch=None):
if self.finished:
if epoch is None:
self.after_scheduler.step(None)
self._last_lr = self.after_scheduler.get_last_lr()
else:
self.after_scheduler.step(epoch - self.warmup_epochs)
self._last_lr = self.after_scheduler.get_last_lr()
else:
return super().step(epoch)
class CosineAnnealingWarmupLR(WarmupScheduler):
"""Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied.
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
eta_min (int, optional): Minimum learning rate, defaults to 0.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: float = 0.0, last_epoch: int = -1):
base_scheduler = _CosineAnnealingLR(
optimizer, total_steps - warmup_steps, eta_min=eta_min, last_epoch=last_epoch
)
super().__init__(optimizer, warmup_steps, base_scheduler)
class FineTuneCosineAnnealingWarmupLR(CosineAnnealingWarmupLR):
"""
FineTune Cosine Annealing Warmup LR.
Args:
optimizer: The optimizer object.
total_steps (int): The number of total steps.
init_steps (int): The number of init steps, default is 0.
warmup_steps (int): The number of warm up steps, default is 0.
eta_min (float): The minimum learning rate, default is 0.0.
last_epoch: Last epoch, default is -1.
"""
def __init__(
self,
optimizer,
total_steps: int,
init_steps: int = 0,
warmup_ratio: float = 0.0,
eta_min: float = 0.0,
last_epoch: int = -1,
):
self._init_steps = init_steps
self._warmup_steps = int(total_steps * warmup_ratio)
# Use this value to calculate the lr of warmup, because warmup_epochs = init_steps + warmup_steps
super().__init__(optimizer, total_steps, self._warmup_steps + init_steps, eta_min, last_epoch)
def get_lr(self):
if self.last_epoch >= self.warmup_epochs:
if not self.finished: # pylint: disable=E0203
# This True switch is to avoid warning when the warmup reaches the preset value switch
self.after_scheduler._get_lr_called_within_step = True
self.after_scheduler.base_lrs = self.base_lrs
self.finished = True
return self.after_scheduler.get_lr()
elif self.last_epoch >= self._init_steps:
return [(self.last_epoch + 1 - self._init_steps) / self._warmup_steps * lr for lr in self.base_lrs]
else:
return [0 for lr in self.base_lrs]
def __str__(self):
return json.dumps(self.state_dict(), indent=4, sort_keys=True)