InternLM/tools/transformers/convert2hf.py

176 lines
6.8 KiB
Python

import argparse
import math
import json
import os
import re
import tempfile
import torch
from modeling_internlm import InternLMConfig, InternLMForCausalLM
from tokenization_internlm import InternLMTokenizer
NUM_SHARDS = {
"7B": 1,
}
def convert2hf(model_config, states_tp_pps):
with tempfile.TemporaryDirectory() as folder:
states = merge_pp(states_tp_pps)[0]
if "embedding.word_embeddings.weight" in states:
embedding_key = "embedding.word_embeddings.weight"
elif "embedding.weight" in states:
embedding_key = "embedding.weight"
else:
print("Check embedding states'names in below:", flush=True)
print(list(states.keys()), flush=True)
dims_per_head = model_config["hidden_size"] // model_config["num_attention_heads"]
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
current_states = {}
current_states["model.embed_tokens.weight"] = states.pop(embedding_key)
current_states["model.norm.weight"] = states.pop("norm.weight")
current_states["lm_head.weight"] = states.pop("head.weight")
for i in range(model_config["num_layers"]):
states.pop(f"blocks.{i}.mixer.rotary_emb.inv_freq")
wqkv = states.pop(f"blocks.{i}.mixer.Wqkv.weight").reshape(
3, model_config["num_attention_heads"], -1, model_config["hidden_size"]
)
bqkv = states.pop(f"blocks.{i}.mixer.Wqkv.bias").reshape(3, model_config["num_attention_heads"], -1)
current_states[f"model.layers.{i}.self_attn.q_proj.weight"] = wqkv[0].reshape(
-1, model_config["hidden_size"]
)
current_states[f"model.layers.{i}.self_attn.q_proj.bias"] = bqkv[0].reshape(-1)
current_states[f"model.layers.{i}.self_attn.k_proj.weight"] = wqkv[1].reshape(
-1, model_config["hidden_size"]
)
current_states[f"model.layers.{i}.self_attn.k_proj.bias"] = bqkv[1].reshape(-1)
current_states[f"model.layers.{i}.self_attn.v_proj.weight"] = wqkv[2].reshape(
-1, model_config["hidden_size"]
)
current_states[f"model.layers.{i}.self_attn.v_proj.bias"] = bqkv[2].reshape(-1)
current_states[f"model.layers.{i}.self_attn.o_proj.weight"] = states.pop(
f"blocks.{i}.mixer.out_proj.weight"
)
current_states[f"model.layers.{i}.self_attn.o_proj.bias"] = states.pop(f"blocks.{i}.mixer.out_proj.bias")
current_states[f"model.layers.{i}.mlp.gate_proj.weight"] = states.pop(f"blocks.{i}.mlp.w1.weight")
current_states[f"model.layers.{i}.mlp.down_proj.weight"] = states.pop(f"blocks.{i}.mlp.w3.weight")
current_states[f"model.layers.{i}.mlp.up_proj.weight"] = states.pop(f"blocks.{i}.mlp.w2.weight")
current_states[f"model.layers.{i}.input_layernorm.weight"] = states.pop(f"blocks.{i}.norm1.weight")
current_states[f"model.layers.{i}.post_attention_layernorm.weight"] = states.pop(f"blocks.{i}.norm2.weight")
current_states[f"model.layers.{i}.self_attn.rotary_emb.inv_freq"] = inv_freq
config = InternLMConfig(
hidden_size=model_config["hidden_size"],
intermediate_size=compute_intermediate_size(model_config["hidden_size"]),
num_attention_heads=model_config["num_attention_heads"],
num_hidden_layers=model_config["num_layers"],
rms_norm_eps=1e-06,
bias=True,
)
if model_config["vocab_size"] != -1:
config.vocab_size = model_config["vocab_size"]
config.save_pretrained(folder)
torch.save(current_states, os.path.join(folder, "pytorch_model.bin"))
model = InternLMForCausalLM.from_pretrained(folder, torch_dtype=torch.float16)
del model.config._name_or_path
return config, model
def compute_intermediate_size(n):
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
def merge_pp(states_tp_pp):
max_tp = len(states_tp_pp)
max_pp = len(states_tp_pp[0])
full_states = []
for tp in range(max_tp):
layer_shift = 0
tp_states = {}
for pp in range(max_pp):
_layer_shift = 0
states = states_tp_pp[tp][pp]
keys = list(states.keys())
for key in keys:
match = re.search("\.\d+\.", key)
if match is not None:
s, e = match.span()
layer_idx = int(key[s + 1 : e - 1]) + layer_shift
_layer_shift = max(_layer_shift, int(key[s + 1 : e - 1]))
name = key[:s] + f".{layer_idx}." + key[e:]
tp_states[name] = states[key]
else:
tp_states[key] = states[key]
layer_shift += _layer_shift + 1
full_states.append({(key[6:] if key.startswith("model.") else key): value for key, value in tp_states.items()})
return full_states
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--src_folder', type=str, default='~/test/') # 需要转换为hf格式的checkpoint文件夹
parser.add_argument('--tgt_folder', type=str, default='~/output/') # 存放转换后checkpoint的目标文件夹
parser.add_argument('--tokenizer', type=str, default='~/test/tokenizer.model') # Tokenizer 文件的路径
args = parser.parse_args()
def load(fp):
with open(fp, "rb") as f:
pt_data = torch.load(f, map_location="cpu")
return pt_data
folder = args.src_folder
target_folder = args.tgt_folder
model_config = load(os.path.join(folder, "model_config.pt"))
fns = list(os.listdir(folder))
model_fns = []
for fn in fns:
if fn.startswith("model_t") and not fn.endswith("md5"):
model_fns.append(fn)
max_tp, max_pp = -1, -1
for fn in model_fns:
_, tp, pp = os.path.splitext(fn)[0].split("_")
max_pp = max(max_pp, int(pp[2:]) + 1)
max_tp = max(max_tp, int(tp[2:]) + 1)
states_tp_pps = [[]]
for pp in range(max_pp):
model_name = f"model_tp0_pp{pp}.pt"
states = load(os.path.join(folder, model_name))
states_tp_pps[0].append(states)
config, model = convert2hf(model_config, states_tp_pps)
os.makedirs(target_folder, exist_ok=True)
model.save_pretrained(target_folder, max_shard_size="20GB")
# TODO There should be a better way to add this.
with open(os.path.join(target_folder, "config.json")) as fp:
config_dict = json.load(fp)
config_dict["auto_map"]["AutoModel"] = "modeling_internlm.InternLMForCausalLM"
with open(os.path.join(target_folder, "config.json"), "w") as fp:
json.dump(config_dict, fp, indent=2)
tokenizer = InternLMTokenizer(args.tokenizer)
tokenizer.save_pretrained(target_folder)