mirror of https://github.com/InternLM/InternLM
462 lines
18 KiB
Python
462 lines
18 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Dict, Union
|
|
|
|
import torch
|
|
|
|
from internlm.core.context import Config
|
|
from internlm.core.context import global_context as gpc
|
|
from internlm.utils.common import get_master_node
|
|
from internlm.utils.logger import get_logger
|
|
from internlm.utils.storage_manager import init_storage_manager
|
|
|
|
logger = get_logger(__file__)
|
|
|
|
|
|
def get_default_parser():
|
|
"""Reads user command line and uses an argument parser to parse the input arguments.
|
|
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
|
|
|
|
Returns:
|
|
Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser.
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--config", type=str, help="path to the config file")
|
|
parser.add_argument(
|
|
"--launcher",
|
|
type=str,
|
|
default="slurm",
|
|
choices=["slurm", "torch"],
|
|
help="launcher for launching distributed environment",
|
|
)
|
|
parser.add_argument("--host", type=str, help="the master address for distributed training")
|
|
parser.add_argument("--port", type=int, default=8888, help="the master port for distributed training")
|
|
parser.add_argument("--world_size", type=int, help="world size for distributed training")
|
|
parser.add_argument("--rank", type=int, help="rank for the default process group")
|
|
parser.add_argument("--local_rank", type=int, help="local rank on the node")
|
|
parser.add_argument("--backend", type=str, default="nccl", help="backend for distributed communication")
|
|
parser.add_argument("--seed", type=int, default=1024)
|
|
parser.add_argument("--profiling", default=False, action="store_true", help="enable/disable profiling.")
|
|
return parser
|
|
|
|
|
|
def args_sanity_check():
|
|
assert gpc.config is not None, "config is not load!"
|
|
|
|
# the default model type is INTERNLM
|
|
if "model_type" not in gpc.config:
|
|
gpc.config._add_item("model_type", "INTERNLM")
|
|
|
|
# procssing the parallel config in gpc
|
|
if "zero1" not in gpc.config.parallel:
|
|
gpc.config.parallel._add_item("zero1", -1)
|
|
|
|
if "pipeline" not in gpc.config.parallel:
|
|
gpc.config.parallel._add_item("pipeline", 1)
|
|
|
|
if "tensor" not in gpc.config.parallel:
|
|
gpc.config.parallel._add_item("tensor", 1)
|
|
|
|
# processing the data config in gpc
|
|
data = gpc.config.data
|
|
|
|
assert data.seq_len is not None, "'seq_len' must be given a value"
|
|
assert data.micro_bsz is not None, "'micro_bsz' must be given a value"
|
|
|
|
if "packed_length" in data and gpc.is_rank_for_log():
|
|
logger.warning("packed_length would be ignored and will be setted as seq_len * micro_bsz.")
|
|
|
|
data._add_item("packed_length", data.seq_len * data.micro_bsz)
|
|
|
|
if "micro_num" not in data:
|
|
data._add_item("micro_num", 1)
|
|
|
|
data._add_item("gradient_accumulation", data.micro_num)
|
|
if gpc.is_rank_for_log():
|
|
logger.info(f"gradient_accumulation size will be setted to {data.micro_num}.")
|
|
|
|
# batch_size should be equal with micro_num, should not use it directly
|
|
data._add_item("batch_size", data.micro_num)
|
|
|
|
if "min_length" not in data:
|
|
data._add_item("min_length", 0)
|
|
|
|
if "train_folder" not in data:
|
|
data._add_item("train_folder", None)
|
|
|
|
if "valid_folder" not in data:
|
|
data._add_item("valid_folder", None)
|
|
|
|
if "valid_micro_num" not in data:
|
|
data._add_item("valid_micro_num", data.micro_num)
|
|
|
|
if "valid_every" not in data:
|
|
data._add_item("valid_every", 0)
|
|
|
|
if gpc.is_rank_for_log():
|
|
logger.info("+" * 15 + " Data Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"seq_len: {data.seq_len}")
|
|
logger.info(f"micro_num: {data.micro_num}")
|
|
logger.info(f"micro_bsz: {data.micro_bsz}")
|
|
logger.info(f"packed_length: {data.packed_length}")
|
|
logger.info(f"pack_sample_into_one: {data.pack_sample_into_one}")
|
|
logger.info(f"min_length: {data.min_length}")
|
|
logger.info(f"valid_micro_num: {data.valid_micro_num}")
|
|
logger.info(f"valid_every: {data.valid_every}")
|
|
|
|
# processing the checkpoint config
|
|
ckpt = gpc.config.ckpt
|
|
if "enable_save_ckpt" not in ckpt:
|
|
ckpt._add_item("enable_save_ckpt", False)
|
|
|
|
# Saving checkpoint args.
|
|
if ckpt.enable_save_ckpt:
|
|
assert "checkpoint_every" in ckpt, "If enable save checkpoint, must give checkpoint_every in config.data!"
|
|
assert ckpt.checkpoint_every > 0
|
|
assert "save_ckpt_folder" in ckpt, "If enable save checkpoint, must give save_ckpt_folder in config.data!"
|
|
|
|
if "async_upload" not in ckpt:
|
|
ckpt._add_item("async_upload", False) # async defalut is False.
|
|
else:
|
|
if ckpt.async_upload:
|
|
assert "save_ckpt_folder" in ckpt
|
|
if "boto3:" not in ckpt.save_ckpt_folder:
|
|
if gpc.is_rank_for_log():
|
|
logger.warning(
|
|
"Storing ckpt on file system does not support asynchronous storage, will use sync save!"
|
|
)
|
|
ckpt.async_upload = False
|
|
else:
|
|
if "async_upload_tmp_folder" not in ckpt:
|
|
ckpt._add_item("async_upload_tmp_folder", "/dev/shm/internlm_tmp_ckpt/")
|
|
|
|
if not ckpt.async_upload:
|
|
ckpt._add_item("async_upload_tmp_folder", None)
|
|
|
|
if "snapshot_ckpt_folder" not in ckpt:
|
|
ckpt._add_item("snapshot_ckpt_folder", os.path.join(ckpt.save_ckpt_folder, "snapshot"))
|
|
|
|
if "oss_snapshot_freq" not in ckpt:
|
|
ckpt._add_item("oss_snapshot_freq", float("inf")) # if oss_snapshot_freq not given, we disable.
|
|
else:
|
|
ckpt._add_item("checkpoint_every", float("inf"))
|
|
ckpt._add_item("oss_snapshot_freq", float("inf"))
|
|
ckpt._add_item("save_ckpt_folder", None)
|
|
ckpt._add_item("async_upload", False)
|
|
ckpt._add_item("async_upload_tmp_folder", None)
|
|
ckpt._add_item("snapshot_ckpt_folder", None)
|
|
ckpt._add_item("snapshot_ckpt_folder", None)
|
|
|
|
# Loading checkpoint args.
|
|
if "load_model_only_folder" not in ckpt:
|
|
ckpt._add_item("load_model_only_folder", None)
|
|
|
|
if "load_ckpt_folder" not in ckpt:
|
|
ckpt._add_item("load_ckpt_folder", None)
|
|
|
|
if "load_optimizer" not in ckpt:
|
|
ckpt._add_item("load_optimizer", True)
|
|
|
|
if "stop_file_path" not in ckpt:
|
|
ckpt._add_item("stop_file_path", None)
|
|
|
|
if "load_given_ckpt" not in ckpt:
|
|
# If 'load_given_ckpt' is not given, we set it to False, so internlm can have opportunity
|
|
# to auto-load latest checkpoint.
|
|
ckpt._add_item("load_given_ckpt", False)
|
|
|
|
if ckpt.load_given_ckpt:
|
|
# Priority: load_given_ckpt(True) > latest_checkpoint > load_model_only_folder
|
|
if ckpt.load_ckpt_folder and ckpt.load_model_only_folder:
|
|
logger.warning(
|
|
"Detect 'load_ckpt_folder' and 'load_model_only_folder' set at the same time, \
|
|
and 'load_given_ckpt' is True, so internlm will load from 'load_ckpt_folder'"
|
|
)
|
|
ckpt.load_model_only_folder = None
|
|
|
|
if gpc.is_rank_for_log():
|
|
logger.info("+" * 15 + " Ckpt Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"is enable save ckpt: {ckpt.enable_save_ckpt}")
|
|
logger.info(f"save_ckpt_folder: {ckpt.save_ckpt_folder}")
|
|
logger.info(f"checkpoint_every: {ckpt.checkpoint_every}")
|
|
logger.info(f"load_given_ckpt: {ckpt.load_given_ckpt}")
|
|
|
|
# initialization storage manager
|
|
init_storage_manager(ckpt)
|
|
|
|
# tensorboard writer config
|
|
if "enable_tb" not in gpc.config:
|
|
gpc.config._add_item("enable_tb", True)
|
|
if "tensorboard_folder" not in gpc.config:
|
|
gpc.config._add_item(
|
|
"tensorboard_folder", os.environ["tensorboard_folder"] if "tensorboard_folder" in os.environ else None
|
|
)
|
|
if "resume_tb_folder" not in gpc.config:
|
|
gpc.config._add_item(
|
|
"resume_tb_folder", os.environ["resume_tb_folder"] if "resume_tb_folder" in os.environ else None
|
|
)
|
|
|
|
if gpc.is_rank_for_log():
|
|
logger.info(f"tensorboard_folder: {gpc.config.tensorboard_folder}")
|
|
logger.info(f"resume_tb_folder: {gpc.config.resume_tb_folder}")
|
|
|
|
# cudnn
|
|
torch.backends.cudnn.benchmark = gpc.config.get("cudnn_benchmark", False)
|
|
torch.backends.cudnn.deterministic = gpc.config.get("cudnn_deterministic", False)
|
|
clip_grad_norm = gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0)
|
|
|
|
if gpc.is_rank_for_log():
|
|
logger.info("+" * 15 + " Other Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"cudnn.benchmark: {torch.backends.cudnn.benchmark }")
|
|
logger.info(f"cudnn.deterministic: {torch.backends.cudnn.deterministic }")
|
|
logger.info(f"clip_grad_norm: {clip_grad_norm}")
|
|
|
|
model = gpc.config.model
|
|
if "dtype" not in model:
|
|
logger.warning("dtype is not set, use torch.float16 by defalut!")
|
|
model._add_item("dtype", torch.float16)
|
|
else:
|
|
if gpc.config.model.dtype == "torch.bfloat16":
|
|
gpc.config.model.dtype = torch.bfloat16
|
|
elif gpc.config.model.dtype in ("torch.float16", "torch.half"):
|
|
gpc.config.model.dtype = torch.float16
|
|
elif gpc.config.model.dtype == "torch.float32":
|
|
gpc.config.model.dtype = torch.float32
|
|
elif gpc.config.model.dtype == "torch.tf32":
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
gpc.config.model.dtype = torch.float32
|
|
else:
|
|
assert gpc.config.model.dtype in [
|
|
"torch.float16",
|
|
"torch.half",
|
|
"torch.bfloat16",
|
|
"torch.float32",
|
|
"torch.tf32",
|
|
]
|
|
|
|
if "checkpoint" in model:
|
|
if model.checkpoint is True:
|
|
model.checkpoint = 1
|
|
elif model.checkpoint is False:
|
|
model.checkpoint = 0
|
|
else:
|
|
assert (
|
|
model.checkpoint >= 0 and model.checkpoint <= 1
|
|
), f'model.checkpoint: "{model.checkpoint}" should >=0 and <=1'
|
|
|
|
if gpc.is_rank_for_log():
|
|
logger.info("+" * 15 + " Model Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"Model: {gpc.config.model}")
|
|
|
|
logger.info("+" * 15 + " grad_scaler Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"grad_scaler: {gpc.config.grad_scaler}")
|
|
|
|
logger.info("+" * 15 + " hybrid_zero_optimizer Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"hybrid_zero_optimizer: {gpc.config.hybrid_zero_optimizer}")
|
|
|
|
logger.info("+" * 15 + " adam Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"adam: {gpc.config.adam}")
|
|
|
|
logger.info("+" * 15 + " beta2_scheduler Info " + "+" * 15) # pylint: disable=W1201
|
|
logger.info(f"beta2_scheduler: {gpc.config.beta2_scheduler}")
|
|
|
|
# process the model config
|
|
if "use_flash_attn" not in gpc.config.model:
|
|
gpc.config.model._add_item("use_flash_attn", True)
|
|
|
|
# process the parallel config
|
|
if "sequence_parallel" not in gpc.config.parallel:
|
|
gpc.config.parallel._add_item("sequence_parallel", False)
|
|
else:
|
|
assert not (
|
|
gpc.config.parallel.sequence_parallel is True and gpc.config.model.use_flash_attn is False
|
|
), "sequence parallel does not support use_flash_attn=False"
|
|
|
|
# feishu webhook address for alerting
|
|
if "alert_address" not in gpc.config:
|
|
gpc.config._add_item("alert_address", None)
|
|
|
|
optim_ckpt = gpc.config.hybrid_zero_optimizer
|
|
if "zero_overlap_communication" in optim_ckpt:
|
|
# Compatible with the old interfaces.
|
|
optim_ckpt._add_item("overlap_sync_grad", optim_ckpt.zero_overlap_communication)
|
|
if "overlap_sync_grad" not in optim_ckpt:
|
|
optim_ckpt._add_item("overlap_sync_grad", False)
|
|
if "overlap_sync_param" not in optim_ckpt:
|
|
optim_ckpt._add_item("overlap_sync_param", False)
|
|
if gpc.is_rank_for_log():
|
|
logger.info(
|
|
f"overlap_sync_grad:{optim_ckpt.overlap_sync_grad}, overlap_sync_param:{optim_ckpt.overlap_sync_param}"
|
|
)
|
|
|
|
|
|
def launch(
|
|
config: Union[str, Path, Config, Dict],
|
|
rank: int,
|
|
world_size: int,
|
|
host: str,
|
|
port: int,
|
|
backend: str = "nccl",
|
|
local_rank: int = None,
|
|
seed: int = 1024,
|
|
):
|
|
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
|
|
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
|
|
|
|
Args:
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
rank (int): Rank for the default process group
|
|
world_size (int): World size of the default process group
|
|
host (str): The master address for distributed training
|
|
port (str): The master port for distributed training
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
local_rank (int, optional):
|
|
Rank for the process on the node and is used to set the default CUDA device,
|
|
defaults to None. If local_rank = None, the default device ordinal will be calculated automatically.
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
|
|
Raises:
|
|
Exception: Raise exception when config type is wrong
|
|
"""
|
|
|
|
# set config
|
|
assert isinstance(
|
|
config, (Config, str, Path, dict)
|
|
), f"expected argument config to be Config, str or Path, but got {type(config)}"
|
|
if not isinstance(config, Config) and isinstance(config, dict):
|
|
config = Config(config)
|
|
if isinstance(config, (str, Path)):
|
|
config = Config.from_file(config)
|
|
gpc.load_config(config)
|
|
|
|
# init default process group
|
|
gpc.init_global_dist(rank, world_size, backend, host, port)
|
|
|
|
# init process groups for different parallel modes from config
|
|
gpc.init_parallel_groups()
|
|
|
|
# set cuda device
|
|
if torch.cuda.is_available():
|
|
# if local rank is not given, calculate automatically
|
|
gpc.set_device(local_rank)
|
|
|
|
# set the number of processes running on the same node
|
|
gpc.detect_num_processes_on_current_node()
|
|
|
|
gpc.set_seed(seed)
|
|
|
|
if gpc.is_rank_for_log():
|
|
logger.info(
|
|
f"Distributed environment is initialized, "
|
|
f"data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, "
|
|
f"tensor parallel size: {gpc.tensor_parallel_size}",
|
|
)
|
|
|
|
|
|
def launch_from_slurm(
|
|
config: Union[str, Path, Config, Dict],
|
|
host: str,
|
|
port: int,
|
|
backend: str = "nccl",
|
|
seed: int = 1024,
|
|
):
|
|
"""A wrapper for internlm.launch for SLURM launcher by reading rank and world size from the environment variables
|
|
set by SLURM
|
|
|
|
Args:
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
host (str): The master address for distributed training
|
|
port (str): The master port for distributed training
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
"""
|
|
try:
|
|
rank = int(os.environ["SLURM_PROCID"])
|
|
world_size = int(os.environ["SLURM_NPROCS"])
|
|
except KeyError as e:
|
|
raise RuntimeError(f"Could not find {e} in the SLURM environment")
|
|
|
|
launch(
|
|
config=config,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
host=host,
|
|
port=port,
|
|
backend=backend,
|
|
seed=seed,
|
|
)
|
|
|
|
|
|
def launch_from_torch(
|
|
config: Union[str, Path, Config, Dict],
|
|
backend: str = "nccl",
|
|
seed: int = 1024,
|
|
):
|
|
"""A wrapper for internlm.launch for torchrun or torch.distributed.launch by reading rank and world size
|
|
from the environment variables set by PyTorch
|
|
|
|
Args:
|
|
config (Union[str, dict, Config]): Config file or config file path are both acceptable
|
|
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
|
|
seed (int, optional): Specified random seed for every process. Defaults to 1024.
|
|
"""
|
|
try:
|
|
rank = int(os.environ["RANK"])
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
world_size = int(os.environ["WORLD_SIZE"])
|
|
host = os.environ["MASTER_ADDR"]
|
|
port = int(os.environ["MASTER_PORT"])
|
|
except KeyError as e:
|
|
raise RuntimeError(f"Could not find {e} in the torch environment")
|
|
|
|
launch(
|
|
config=config,
|
|
local_rank=local_rank,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
host=host,
|
|
port=port,
|
|
backend=backend,
|
|
seed=seed,
|
|
)
|
|
|
|
|
|
def initialize_distributed_env(
|
|
config: str,
|
|
launcher: str = "slurm",
|
|
master_port: int = 8888,
|
|
seed: int = 1024,
|
|
args_check=True,
|
|
):
|
|
"""
|
|
Initialize distributed environment for distributed training.
|
|
|
|
Args:
|
|
config (str): Config file path.
|
|
launcher (str): Launcher for launching distributed environment, can be slurm or torch. "slurm" by default.
|
|
master_port (str): The master port for distributed training. 8888 by default.
|
|
seed (int, optional): Specified random seed for every process. 1024 by default.
|
|
"""
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
if launcher == "torch":
|
|
launch_from_torch(config=config, seed=seed)
|
|
elif launcher == "slurm":
|
|
launch_from_slurm(
|
|
config=config,
|
|
host=get_master_node(),
|
|
port=master_port,
|
|
seed=seed,
|
|
)
|
|
else:
|
|
assert launcher in ["slurm", "torch"], "launcher only support slurm or torch"
|
|
|
|
if args_check:
|
|
args_sanity_check()
|