InternLM/internlm/model/moe.py

264 lines
9.8 KiB
Python

import typing
from typing import Dict, Tuple
import torch
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.model.linear import FeedForward
from internlm.moe.experts import Experts
from internlm.moe.sharded_moe import MOELayer, TopKGate
from internlm.utils.logger import get_logger
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# global llm logger
logger = get_logger(__file__)
def has_moe_layers(m):
has_moe = False
num_experts = 0
for _, module in m.named_modules():
if isinstance(module, MoE):
has_moe = True
num_experts = module.num_experts
break
return has_moe, num_experts
def is_moe_param(param: torch.Tensor) -> bool:
if hasattr(param, "is_expert") and param.is_expert:
return True
return False
class MoE(torch.nn.Module):
"""Initialize an MoE layer.
Arguments:
hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.
expert (torch.nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).
num_experts (int, optional): default=1, the total number of experts per layer.
ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.
k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.
capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.
eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.
min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.
noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample'
or 'None'.
using_default_moe (bool, optional): default=True, whether to use the default MoE layer.
drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to
infinite capacity).
use_rts (bool, optional): default=True, whether to use Random Token Selection.
moe_use_residual (bool, optional): default=False, make this MoE layer a Residual MoE
(https://arxiv.org/abs/2201.05596) layer.
residual_mlp (torch.nn.Module, optional): default=None, the torch module that defines the residual MLP.
"""
def __init__(
self,
hidden_size,
num_experts=1,
ep_size=1,
k=1,
capacity_factor=1.0,
eval_capacity_factor=1.0,
min_capacity=4,
noisy_gate_policy: typing.Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
using_default_moe: bool = True,
use_residual=False,
device=None,
dtype=None,
):
super().__init__()
assert (
num_experts % ep_size == 0
), f"Number of experts ({num_experts}) should be divisible by expert parallel size ({ep_size})"
self.ep_size = ep_size
self.num_experts = num_experts
self.num_local_experts = num_experts // self.ep_size
if gpc.is_rank_for_log():
logger.info( # pylint: disable=W1203
f"Creating MoE layer with num_experts: {num_experts} | num_local_experts:"
f"{self.num_local_experts} | expert_parallel_size: {self.ep_size}"
)
assert noisy_gate_policy is None or noisy_gate_policy in ["None", "Jitter", "RSample"], (
"Unsupported noisy_gate_policy: " + noisy_gate_policy
)
# for elastic expert paralle, experts may have multiple groups
expert_group_name = f"ep_size_{self.ep_size}"
experts = torch.nn.ModuleList(
[
# TODO have trouble when use internlm.model.linear.FeedForward
FeedForward(
hidden_size,
int(hidden_size * gpc.config.model.mlp_ratio),
out_features=hidden_size,
process_group=gpc.get_group(ParallelMode.TENSOR),
bias=False,
device=device,
dtype=dtype,
)
for _ in range(self.num_local_experts)
]
)
experts = Experts(experts, self.num_local_experts, expert_group_name)
if using_default_moe:
self.moe_layer = MOELayer(
TopKGate(
hidden_size,
num_experts,
k,
capacity_factor,
eval_capacity_factor,
min_capacity,
noisy_gate_policy,
drop_tokens,
use_rts,
),
experts,
gpc.get_group(ParallelMode.EXPERT),
self.ep_size,
self.num_local_experts,
)
# residual network, see https://arxiv.org/pdf/2201.05596.pdf, seems useful for convergence
self.use_residual = use_residual
if use_residual:
self.residual_mlp = FeedForward(
hidden_size,
int(hidden_size * gpc.config.model.mlp_ratio),
out_features=hidden_size,
process_group=gpc.get_group(ParallelMode.TENSOR),
bias=False,
device=device,
dtype=dtype,
)
# coefficient is used for weighted sum of the output of expert and residual mlp
self.coefficient = torch.nn.Linear(hidden_size, 2)
def forward(self, hidden_states, used_token=None):
"""MoE forward
Arguments:
hidden_states (Tensor): input to the layer
used_token (Tensor, optional): default: None, mask only used tokens
Returns:
A tuple including output, gate loss, and expert count.
* output (Tensor): output of the model
* l_aux (Tensor): gate loss value
* exp_counts (int): expert count
"""
output = self.moe_layer(hidden_states, used_token)
if self.use_residual:
# Residual MoE
output_mlp = self.residual_mlp(hidden_states)
if isinstance(output_mlp, tuple):
output_mlp = output_mlp[0] # Ignore the bias term for now
coef = self.coefficient(hidden_states)
coef = torch.nn.functional.softmax(coef, dim=-1)
output = output * coef[..., 0:1] + output_mlp * coef[..., 1:]
return output, self.moe_layer.l_aux, self.moe_layer.exp_counts
def split_params_into_different_moe_groups_for_optimizer(param_groups: Tuple[Dict], max_group_size=None) -> Tuple[Dict]:
"""Split parameters into different MoE groups for optimizer
Compatiable with muiltiple param groups, each should have a name
Args:
param_groups (Tuple[Dict]):
The list of parameter groups to split
Returns:
Tuple[Dict]:
list of MoE/non-MoE groups for optimizer
"""
if isinstance(param_groups, tuple):
param_groups = list(param_groups) # Tuple cannot be modified
elif isinstance(param_groups, dict):
param_groups = [param_groups]
elif not isinstance(param_groups, list):
raise ValueError(f"Unknown param group type of {type(param_groups)}")
# gather all data parallel group names
data_parallel_group_names = set()
for param_group in param_groups:
for param in param_group["params"]:
if is_moe_param(param):
data_parallel_group_names.add(param.group_name)
data_parallel_group_names = list(data_parallel_group_names)
group_moe = {}
# Create the param MoE groups, leave param assign to next step
for param_group in param_groups:
for key in data_parallel_group_names:
group_moe[key] = {}
group_moe[key]["name"] = key
group_moe[key]["moe"] = True
for ori_key in param_group.keys():
if ori_key != "name":
if ori_key == "params":
group_moe[key][ori_key] = []
else:
group_moe[key][ori_key] = param_group[ori_key]
# Assign param
for param_group in param_groups:
new_params = []
for param in param_group["params"]:
if is_moe_param(param):
group_moe[param.group_name]["params"].append(param)
# param_group['params'].remove(param)
else:
new_params.append(param)
param_group["params"] = new_params
# Flatten the moe groups
if max_group_size is not None:
for _, v1 in group_moe.items():
cur_group = []
all_groups = []
size_of_cur_group = 0
for param in v1["params"]:
cur_group.append(param)
size_of_cur_group += param.numel()
if size_of_cur_group > max_group_size:
all_groups.append(cur_group)
cur_group = []
size_of_cur_group = 0
if cur_group:
all_groups.append(cur_group)
for group in all_groups:
new_dict = {}
for key, val in v1.items():
if key != "params":
new_dict[key] = val
new_dict["params"] = group
param_groups.append(new_dict)
else:
for _, v1 in group_moe.items():
param_groups.append(v1)
return tuple(param_groups)
def create_moe_param_groups(model, weight_decay):
parameters = {"params": list(model.parameters()), "name": "default", "weight_decay": weight_decay}
return split_params_into_different_moe_groups_for_optimizer(parameters)