InternLM/tools/tokenizer.py

143 lines
4.6 KiB
Python

import argparse
import json
import os
import sys
import numpy as np
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, "V7_sft.model")
sys.path.append(os.path.join(current_dir, "transformers"))
from tokenization_internlm import InternLMTokenizer
tokenizer = InternLMTokenizer(vocab_file=model_path)
def write_bin(context: str, bin_file) -> None:
"""
Write bin file based on the context.
Args:
context (str): the context of raw file.
bin_file (file handler): the opened bin file.
Example:
>>> write_bin("今天天气晴朗适合出门散步", "out.bin") # the output file format is 'txt'
>>> out.bin
>>> {"tokens": [67577, 69095, 63010, 61770, 67783, 69301, 74732]}
"""
# encode the context into tokens, which is a list, eg. [67577, 69095, 63010, 61770, 67783, 69301, 74732]
tokens = tokenizer.encode(context)
# transfer the list into dic, key is str 'tokens', value is tokens.
# eg. {"tokens": [67577, 69095, 63010, 61770, 67783, 69301, 74732]}
data = dict(tokens=tokens)
# encode the data into bytes to save
saved_bin = str.encode(json.dumps(data) + "\n")
# write bytes into bin_file
bin_file.write(saved_bin)
def prepare_meta(bin_output_path: str):
"""
Prepare metadata for the given bin file.
Args:
bin_output_path (str): Output bin file path.
"""
meta = []
cur = 0
with open(bin_output_path, "rb") as f:
while True:
# read lines
line = f.readline()
# if line is empty, then break
if line == b"":
break
# obtain the token amount of each line
length = len(json.loads(line)["tokens"])
# meta is a list of tuple(cur, length)
# cur: the start index of each line
# length: the token amount of each line
meta.append((cur, length))
# update the cur to generate the meta information of next line
cur += len(line)
# define path of the generated meta file
meta_fp = bin_output_path + ".meta"
# save the generated meta information
with open(meta_fp, "wb") as f:
meta = np.array(meta, dtype=np.int32)
np.save(f, meta)
def text2bin(text_input_path: str, bin_output_path: str):
"""
Read content from the input file and write to bin file.
Currently support 3 input formats: 'txt', 'json' and 'jsonl'.
Args:
text_input_path (str): txt file path.
bin_output_path (str): output bin file path.
"""
# Check if the txt file exists
if not os.path.isfile(text_input_path):
raise FileNotFoundError(f"{text_input_path} does not exist.")
file_format = text_input_path.split(".")[-1]
assert file_format in ["txt", "json", "jsonl"], print(
"Invalid input file type. Currently support `txt`, `json` and `jsonl`."
)
with open(text_input_path, "r") as text_file, open(bin_output_path, "ab") as bin_file:
if file_format == "txt":
for line in text_file:
# Strip any leading/trailing whitespace
stripped_line = line.strip()
if stripped_line:
# Pass each line to the write_bin function
write_bin(stripped_line, bin_file)
elif file_format == "json":
data = json.load(text_file)
# assuming data is a list of dictionaries
for record in data:
# the type of record is dict, transfer the dict into str
context = json.dumps(record)
# encode the str and write into bin
write_bin(context, bin_file)
elif file_format == "jsonl":
for line in text_file:
# encode the str and write into bin
write_bin(line, bin_file)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--text_input_path",
type=str,
required=True,
help="Path to the input text file.",
)
parser.add_argument("--bin_output_path", type=str, required=True, help="Path to the output bin file.")
return parser.parse_args()
def main():
# parse arguments
args = parse_args()
text2bin(args.text_input_path, args.bin_output_path)
print(f"Successfully converted {args.text_input_path} to {args.bin_output_path}")
# To avoid potential read/write errors, the metadata preparation follows after creating the .bin file.
prepare_meta(args.bin_output_path)
print(f"Successfully generated {args.bin_output_path}.meta")
if __name__ == "__main__":
main()