mirror of https://github.com/InternLM/InternLM
165 lines
5.1 KiB
Python
165 lines
5.1 KiB
Python
import argparse
|
|
import json
|
|
import os.path as osp
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import sentencepiece as spm
|
|
from tqdm import tqdm
|
|
|
|
|
|
def process(dataset_path, sp_model):
|
|
"""Process data sample from input dataset
|
|
|
|
Args:
|
|
dataset_path (str): Path of dataset json file.
|
|
sp_model (str): Path of tokenizer.
|
|
|
|
Yields:
|
|
tuple: dumped processed data sample and length of tokens.
|
|
"""
|
|
|
|
dataset = json.load(open(dataset_path))
|
|
|
|
for data in dataset:
|
|
yield tokenize(get_chat_format_data(data), sp_model)
|
|
|
|
|
|
def get_chat_format_data(ori_data):
|
|
"""Format original data
|
|
|
|
Args:
|
|
ori_data (dict): input data sample.
|
|
|
|
Returns:
|
|
dict: data sample with chat format.
|
|
"""
|
|
input_str = ori_data["input"]
|
|
instruction_str = ori_data["instruction"]
|
|
output_str = ori_data["output"]
|
|
data = dict()
|
|
if input_str != "":
|
|
data["user"] = f"<|User|>:{instruction_str}\n{input_str}"
|
|
else:
|
|
data["user"] = f"<|User|>:{instruction_str}"
|
|
data["bot"] = f"<|Bot|>:{output_str}"
|
|
return data
|
|
|
|
|
|
def tokenize(sample, sp_model):
|
|
"""Tokenize input dataset
|
|
|
|
Args:
|
|
sample (dict): Input data sample.
|
|
sp_model (str): Path of tokenizer.
|
|
|
|
Returns:
|
|
tuple: dumped processed data sample and length of tokens.
|
|
"""
|
|
special_tokens_map = {"<eoh>": 103167, "<eoa>": 103166, "nl_id": 13}
|
|
token_ids = [sp_model.bos_id()]
|
|
human_s = sample["user"]
|
|
ass_s = sample["bot"]
|
|
|
|
human_ids = sp_model.encode(human_s) + [special_tokens_map["<eoh>"], special_tokens_map["nl_id"]]
|
|
human_ids_ignore = [-token_id for token_id in human_ids]
|
|
|
|
ass_template_ids = sp_model.encode("<|Bot|>:")
|
|
ass_template_ids_ignore = [-token_ids for token_ids in ass_template_ids]
|
|
ass_ids = (
|
|
ass_template_ids_ignore
|
|
+ sp_model.encode(ass_s[8:])
|
|
+ [special_tokens_map["<eoa>"], special_tokens_map["nl_id"]]
|
|
)
|
|
|
|
token_ids += human_ids_ignore + ass_ids
|
|
if len(token_ids) > 2047:
|
|
token_ids = token_ids[:2047]
|
|
token_ids += [sp_model.eos_id()]
|
|
line = str.encode(json.dumps({"tokens": token_ids}) + "\n")
|
|
return line, len(token_ids)
|
|
|
|
|
|
def dump_bin_meta_bin(samples, path, split_ratio=0.1):
|
|
"""Dump processed dataset
|
|
|
|
Args:
|
|
samples (dict): Input data sample.
|
|
path (str): Path for output dataset.
|
|
split_ratio (float): Ratio for validation dataset splitting.
|
|
Default to: 0.1.
|
|
|
|
Returns:
|
|
tuple: number of train/valid tokens of processed dataset,
|
|
number of train/valid samples of processed dataset.
|
|
"""
|
|
|
|
train_path = osp.join(path, "train/en/")
|
|
valid_path = osp.join(path, "valid/en/")
|
|
train_dir = Path(train_path)
|
|
valid_dir = Path(valid_path)
|
|
train_dir.mkdir(exist_ok=True, parents=True)
|
|
valid_dir.mkdir(exist_ok=True, parents=True)
|
|
train_f = open(train_dir.joinpath("dataset.bin"), "wb")
|
|
valid_f = open(valid_dir.joinpath("dataset.bin"), "wb")
|
|
|
|
train_tokens = 0
|
|
valid_tokens = 0
|
|
last_train_position = 0
|
|
last_valid_position = 0
|
|
train_samples = 0
|
|
valid_samples = 0
|
|
train_meta = []
|
|
valid_meta = []
|
|
|
|
sample_length = len(samples)
|
|
np.random.seed(0)
|
|
valid_indices = np.random.choice(range(sample_length), int(sample_length * split_ratio)).tolist()
|
|
|
|
count = -1
|
|
for line, token_num in samples:
|
|
count += 1
|
|
if count in valid_indices:
|
|
valid_tokens += token_num
|
|
valid_f.write(line)
|
|
valid_meta.append((last_valid_position, token_num))
|
|
last_valid_position += len(line)
|
|
valid_samples += 1
|
|
else:
|
|
train_tokens += token_num
|
|
train_f.write(line)
|
|
train_meta.append((last_train_position, token_num))
|
|
last_train_position += len(line)
|
|
train_samples += 1
|
|
|
|
train_f.close()
|
|
valid_f.close()
|
|
np.save(open(train_dir.joinpath("dataset.bin.meta"), "wb"), train_meta)
|
|
np.save(open(valid_dir.joinpath("dataset.bin.meta"), "wb"), valid_meta)
|
|
|
|
return train_tokens, valid_tokens, train_samples, valid_samples
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("dataset_path", type=str, help="path of dataset json file")
|
|
parser.add_argument("output_path", type=str, help="path of processed dataset")
|
|
parser.add_argument("tokenizer_path", type=str, help="path of tokenizer")
|
|
parser.add_argument("--split_ratio", type=float, default=0.1, help="ratio for validation dataset splitting")
|
|
|
|
args = parser.parse_args()
|
|
sp_model = spm.SentencePieceProcessor(model_file=args.tokenizer_path)
|
|
split_ratio = args.split_ratio
|
|
samples = []
|
|
|
|
dataset = process(args.dataset_path, sp_model)
|
|
for sample in tqdm(dataset):
|
|
samples.append(sample)
|
|
|
|
train_tokens, valid_tokens, train_samples, valid_samples = dump_bin_meta_bin(
|
|
samples, args.output_path, args.split_ratio
|
|
)
|
|
print(f"number of train dataset: {train_samples}, number of train dataset token: {train_tokens}")
|
|
print(f"number of validation dataset: {valid_samples}, number of validation dataset token: {valid_tokens}")
|