InternLM/internlm/data/utils.py

56 lines
1.8 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
import re
import torch
from internlm.core.context import global_context as gpc
def get_dataset_type_ids_map(path):
dirlist = list(os.listdir(path))
dirlist.sort()
return {key: idx for idx, key in enumerate(dirlist)}
def get_dataset_type_id(dataset_type_ids_map, path):
match_idxes = []
for key, idx in dataset_type_ids_map.items():
if re.search(rf"/[z_]*{key}/", path):
match_idxes.append(idx)
assert len(match_idxes) == 1, f"{path}, match_idxes should be 1, but got {match_idxes} from {dataset_type_ids_map}"
return match_idxes[0]
def unpack_data(input_ids, cu_seqlens, is_type_ids: bool = False):
"""
input_ids: if input_ids is not type_ids, the shape is (1, packed_length)
else the shape is (micro_num, packed_length)
is_type_ids: whether the input_ids is type_ids
Return:
output: if input_ids is not type ids, the shape is (micro_bsz, max_length)
else the shape is (micro_num, micro_bsz, max_length)
"""
bsz = input_ids.shape[0]
num_sequence = gpc.config.data["micro_bsz"]
outputs = torch.zeros(bsz, num_sequence, gpc.config.data.seq_len, device=input_ids.device, dtype=input_ids.dtype)
for i in range(bsz):
output = torch.zeros(num_sequence, gpc.config.data.seq_len, device=input_ids.device, dtype=input_ids.dtype)
cu_seqlens_slice = cu_seqlens[i]
for j in range(num_sequence):
seq_length = cu_seqlens_slice[j + 1] - cu_seqlens_slice[j]
output[j, 0:seq_length] = input_ids[0, cu_seqlens_slice[j] : cu_seqlens_slice[j + 1]]
outputs[i] = output
# if the input_ids is not type_ids, we need squeeze the first dimension if it is 1.
if bsz == 1 and not is_type_ids:
outputs = outputs.squeeze(0)
return outputs