InternLM/tests/test_hf_model.py

81 lines
2.8 KiB
Python

import pytest
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
prompts = ['你好', "what's your name"]
def assert_model(response):
assert len(response) != 0
assert 'UNUSED_TOKEN' not in response
class TestChat:
"""Test cases for chat model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm2-chat-7b',
'internlm/internlm2-chat-7b-sft',
],
)
def test_demo_default(self, model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16,
trust_remote_code=True).cuda()
model = model.eval()
for prompt in prompts:
response, history = model.chat(tokenizer, prompt, history=[])
print(response)
assert_model(response)
for prompt in prompts:
length = 0
for response, history in model.stream_chat(tokenizer,
prompt,
history=[]):
print(response[length:], flush=True, end='')
length = len(response)
assert_model(response)
class TestBase:
"""Test cases for base model."""
@pytest.mark.parametrize(
'model_name',
[
'internlm/internlm2-7b',
'internlm/internlm2-base-7b',
],
)
def test_demo_default(self, model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise
# it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16,
trust_remote_code=True).cuda()
for prompt in prompts:
inputs = tokenizer(prompt, return_tensors='pt')
for k, v in inputs.items():
inputs[k] = v.cuda()
gen_kwargs = {
'max_length': 128,
'top_p': 10,
'temperature': 1.0,
'do_sample': True,
'repetition_penalty': 1.0,
}
output = model.generate(**inputs, **gen_kwargs)
output = tokenizer.decode(output[0].tolist(),
skip_special_tokens=True)
print(output)
assert_model(output)