InternLM/doc/code-docs/locales/en/LC_MESSAGES/initialize.po

249 lines
8.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# SOME DESCRIPTIVE TITLE.
# Copyright (C) 2023, InternLM Team
# This file is distributed under the same license as the InternLM package.
# FIRST AUTHOR <EMAIL@ADDRESS>, 2023.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: InternLM \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2023-09-14 12:23+0800\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language: zh_CN\n"
"Language-Team: zh_CN <LL@li.org>\n"
"Plural-Forms: nplurals=1; plural=0;\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.12.1\n"
#: ../../source/initialize.rst:2
msgid "训练构建"
msgstr "Training Setup"
#: ../../source/initialize.rst:4
msgid "InternLM 的训练流程可以归纳为两个步骤:"
msgstr "The training process of InternLM can be summarized into two steps: "
#: ../../source/initialize.rst:6
msgid "初始化"
msgstr "Initialization"
#: ../../source/initialize.rst:8
msgid "初始化模型、优化器、数据加载器、Trainer生成不同种类的进程组为混合并行的迭代训练做准备。"
msgstr ""
"Initialize model, optimizer, dataloader, trainer, and create different "
"types of process groups to prepare for iterative steps of hybrid parallel training. "
#: ../../source/initialize.rst:9
msgid "初始化Logger、Checkpoint管理器、Monitor管理器、Profiler对迭代训练的过程观察、预警、记录。"
msgstr ""
"Initialize logger, checkpoint manager, monitor manager, and profiler to "
"watch, alert, and record the iterative training steps. "
#: ../../source/initialize.rst:11
msgid "迭代训练"
msgstr "Iterative training steps"
#: ../../source/initialize.rst:13
msgid "根据配置文件定义的张量并行、流水线并行、数据并行的大小,加载训练引擎和调度器进行混合并行训练。"
msgstr ""
"Load the training engine and scheduler for hybrid parallel training "
"according to the configuration such as tensor parallel size, pipeline "
"parallel size, and data parallel size. "
#: ../../source/initialize.rst:14
msgid "在迭代训练中,调用 Trainer API 进行梯度置零,前向传播计算损失并反向传播,参数更新。"
msgstr ""
"In iterative training steps, the Trainer API is called to perform zero "
"gradients, forward-loss-backward, and parameter update."
#: ../../source/initialize.rst:20
msgid "InternLM训练流程图"
msgstr "InternLM training process"
#: ../../source/initialize.rst:25
msgid "命令行参数解析"
msgstr "Argument Parsing"
#: ../../source/initialize.rst:27
msgid ""
"InternLM 使用 `argparse <https://docs.python.org/3/library/argparse.html>`_"
" 库来向InternLM运行时提供命令行参数配置。"
msgstr ""
"InternLM uses the `argparse "
"<https://docs.python.org/3/library/argparse.html>`_ library to supply "
"commandline configuration to the InternLM runtime. "
#: ../../source/initialize.rst:29
msgid ""
"用户可使用 ``internlm.initialize.get_default_parser()`` 来获取 InternLM "
"的默认解析器,其中包含一些内置参数,用户可以向此解析器添加自定义参数。"
msgstr ""
"Use ``internlm.initialize.get_default_parser()`` to get InternLM's "
"default parser with some builtin arguments, users can add custom "
"parameters to this parser."
#: internlm.initialize.launch.get_default_parser:1 of
msgid ""
"Reads user command line and uses an argument parser to parse the input "
"arguments. Input arguments include configuration, host, port, world size,"
" local rank, backend for torch.distributed."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer
#: internlm.initialize.launch.get_default_parser
#: internlm.train.training_internlm.get_train_data_loader
#: internlm.train.training_internlm.initialize_model
#: internlm.train.training_internlm.initialize_optimizer of
msgid "返回"
msgstr ""
#: internlm.initialize.launch.get_default_parser:4 of
msgid ""
"Returns the parser with the default arguments, the user may add "
"customized arguments into this parser."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer
#: internlm.initialize.launch.get_default_parser
#: internlm.train.training_internlm.initialize_model of
msgid "返回类型"
msgstr ""
#: ../../source/initialize.rst:45
msgid "模型初始化"
msgstr "Model Initialization"
#: internlm.train.training_internlm.initialize_model:1 of
msgid "Initialize model with Automatic Mixed Precision."
msgstr ""
#: internlm.train.training_internlm.initialize_model:3 of
msgid "The neural network model to be trained or evaluated."
msgstr ""
#: ../../source/initialize.rst:49
msgid "InternLM 在配置文件中使用字段 ``model_type`` 和 ``model`` 来控制模型初始化过程。示例模型初始化配置定义如下:"
msgstr ""
"InternLM uses the field ``model_type`` and ``model`` in the config file "
"to control model initialization process. An example model initialization "
"configuratio"
#: ../../source/initialize.rst:77
msgid "字段 ``model_type`` 指明了要初始化的模型类型"
msgstr ""
"The field ``model_type`` specifics the model type has been registered and"
" to be initialized."
#: ../../source/initialize.rst:78
msgid "字段 ``model`` 中的参数指定了在模型初始化过程中的参数设置"
msgstr ""
"The parameters in field ``model`` specific the configuration settings "
"during model initialization."
#: ../../source/initialize.rst:80
msgid ""
"值得注意的是,用户可以定义新的模型类型,并使用装饰器 ``@MODEL_INITIALIZER.register_module`` "
"注册模型的初始化函数,其中 ``MODEL_INITIALIZER`` 是类 "
"``internlm.util.registry.Registry`` 的一个实例化对象,示例如下所示:"
msgstr ""
"It is worth noting that, users can define new model type, and register "
"model's initialization function by decorater "
"``@MODEL_INITIALIZER.register_module``, which ``MODEL_INITIALIZER`` is an"
" instantiated object of class ``internlm.util.registry.Registry``, the "
"example is shown as follows."
#: ../../source/initialize.rst:92
msgid "优化器初始化"
msgstr "Optimizer Initialization"
#: internlm.train.training_internlm.initialize_optimizer:1 of
msgid "Initialize optimizer."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer
#: internlm.train.training_internlm.get_train_data_loader
#: internlm.train.training_internlm.initialize_optimizer of
msgid "参数"
msgstr ""
#: internlm.train.training_internlm.initialize_optimizer:3 of
msgid "Your model instance to be trained or evaluated."
msgstr ""
#: internlm.train.training_internlm.initialize_optimizer:6 of
msgid "A tuple of (optimizer, beta2_scheduler, lr_scheduler)."
msgstr ""
#: ../../source/initialize.rst:99
msgid "数据加载器初始化"
msgstr "Dataloader Initialization"
#: internlm.train.training_internlm.get_train_data_loader:1 of
msgid "Generate and return the training data loader."
msgstr ""
#: internlm.train.training_internlm.get_train_data_loader:3 of
msgid "number of subprocesses used for dataloader."
msgstr ""
#: internlm.train.training_internlm.get_train_data_loader:5 of
msgid "generate function for dataset."
msgstr ""
#: internlm.train.training_internlm.get_train_data_loader:7 of
msgid "dataset sampler for training dataloader."
msgstr ""
#: internlm.train.training_internlm.get_train_data_loader:9 of
msgid "collate function for training dataloader."
msgstr ""
#: internlm.train.training_internlm.get_train_data_loader:12 of
msgid "A tuple of (train_dl, dataset_types)."
msgstr ""
#: ../../source/initialize.rst:106
msgid "Trainer 初始化"
msgstr "Trainer Initialization"
#: internlm.initialize.initialize_trainer.initialize_trainer:1 of
msgid ""
"Core function to wrap the essential training components with our "
"functionality based on the config which is loaded into gpc.config."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:4 of
msgid "Your model instance or a function to build the model."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:6 of
msgid "Your optimizer for training."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:8 of
msgid "Your criterion instance."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:10 of
msgid "Dataloader for training."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:12 of
msgid "Dataloader for testing."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:14 of
msgid "Your lr scheduler instance, optional."
msgstr ""
#: internlm.initialize.initialize_trainer.initialize_trainer:17 of
msgid ""
"A tuple of ``(trainer, train_dataloader, test_dataloader, lr_scheduler)``"
" where only ``trainer`` could not be None."
msgstr ""