InternLM/tests/test_utils/test_model_checkpoint.py

359 lines
13 KiB
Python

import os
from functools import partial
import pytest
import torch
import torch.distributed as dist
from internlm.core.context.parallel_context import Config
from internlm.core.trainer import TrainState
from internlm.solver.optimizer.hybrid_zero_optim import HybridZeroOptimizer
from internlm.utils.common import SingletonMeta
from internlm.utils.model_checkpoint import CheckpointManager
from internlm.utils.storage_manager import wait_async_upload_finish
from tests.test_utils.common_fixture import ( # noqa # pylint: disable=unused-import
ASYNC_TMP_FOLDER,
BOTO_SAVE_PATH,
LOCAL_SAVE_PATH,
del_tmp_file,
init_config,
init_dist_and_model,
reset_singletons,
)
# (TOTAL_STEP, CKPT_EVERY, SNPASHOT_EVERY)
step_info_list = [(8, 4, 2), (3, 4, 2), (1, 6, 3)]
ckpt_config_list = [
# Old interface format
dict(
enable_save_ckpt=True,
save_ckpt_folder=BOTO_SAVE_PATH,
load_optimizer=True,
checkpoint_every=0,
async_upload=True,
async_upload_tmp_folder=ASYNC_TMP_FOLDER,
snapshot_ckpt_folder="/".join([BOTO_SAVE_PATH, "snapshot"]),
oss_snapshot_freq=0,
stop_file_path=None,
load_model_only_folder=None,
load_given_ckpt=False,
load_ckpt_folder=None,
is_old_api=True,
),
# Old interface format
dict(
enable_save_ckpt=True,
save_ckpt_folder=LOCAL_SAVE_PATH,
load_optimizer=True,
checkpoint_every=0,
async_upload=False,
async_upload_tmp_folder=ASYNC_TMP_FOLDER,
snapshot_ckpt_folder="/".join([LOCAL_SAVE_PATH, "snapshot"]),
oss_snapshot_freq=0,
stop_file_path=None,
load_model_only_folder=None,
load_given_ckpt=False,
load_ckpt_folder=None,
is_old_api=True,
),
# New interface format
dict(
enable_save_ckpt=True,
save_ckpt_folder=BOTO_SAVE_PATH,
checkpoint_every=0,
async_upload=True,
async_upload_tmp_folder=ASYNC_TMP_FOLDER,
oss_snapshot_freq=0,
stop_file_path=None,
is_old_api=False,
auto_resume=True,
),
dict(
enable_save_ckpt=True,
save_ckpt_folder=LOCAL_SAVE_PATH,
checkpoint_every=0,
async_upload=False,
async_upload_tmp_folder=ASYNC_TMP_FOLDER,
oss_snapshot_freq=0,
stop_file_path=None,
load_ckpt_folder=None,
is_old_api=False,
auto_resume=True,
),
]
def overwrite_optim_state(optim, set_value):
if isinstance(optim, HybridZeroOptimizer):
for group_id, p in optim._fp32_flat_param_groups_of_current_rank.items():
if optim._zero_local_rank[group_id] not in optim.param_group_no_params_ranks[group_id]:
# p.copy_(torch.full_like(p, set_value, dtype=p.dtype))
p.data.fill_(set_value)
for group_id in range(len(optim._fp16_param_groups)):
if optim._zero_local_rank[group_id] not in optim.param_group_no_params_ranks[group_id]:
fp16_p = optim._param_store.get_flat_fp16_param_by_rank_group(
rank=optim._zero_local_rank[group_id], group_id=group_id
)
fp16_p.fill_(set_value)
else:
for group in optim.param_groups:
for p in group["params"]:
# p.copy_(torch.full_like(p, set_value, dtype=p.dtype))
p.data.fill_(set_value)
def compare_optim_state(optim1, optim2):
re = True
if isinstance(optim1, HybridZeroOptimizer):
fp32_buff1 = optim1._fp32_flat_param_groups_of_current_rank
fp32_buff2 = optim2._fp32_flat_param_groups_of_current_rank
for group_id_1, group_id_2 in zip(fp32_buff1, fp32_buff2):
re &= group_id_1 == group_id_2
if optim1.zero_local_rank[group_id_1] not in optim1.param_group_no_params_ranks[group_id_1]:
re &= torch.equal(fp32_buff1[group_id_1], fp32_buff1[group_id_2])
else:
for group1, group2 in zip(optim1.param_groups, optim2.param_groups):
for p1, p2 in zip(group1["params"], group2["params"]):
re &= torch.equal(p1, p2)
return re
def compare_optim_value(optim, value):
re = True
if isinstance(optim, HybridZeroOptimizer):
for group_id, p in optim._fp32_flat_param_groups_of_current_rank.items():
if optim._zero_local_rank[group_id] not in optim.param_group_no_params_ranks[group_id]:
re &= torch.equal(p, torch.full_like(p, value, dtype=p.dtype))
for group_id in range(len(optim._fp16_param_groups)):
if optim._zero_local_rank[group_id] not in optim.param_group_no_params_ranks[group_id]:
fp16_p = optim._param_store.get_flat_fp16_param_by_rank_group(
rank=optim._zero_local_rank[group_id], group_id=group_id
)
re &= torch.equal(fp16_p, torch.full_like(fp16_p, value, dtype=fp16_p.dtype))
else:
for group in optim.param_groups:
for p in group["params"]:
re &= torch.equal(p, torch.full_like(p, value, dtype=p.dtype))
return re
def overwrite_model_value(model, value):
for p in model.parameters():
# p.copy_(torch.full_like(p, value, dtype=p.dtype))
p.data.fill_(value)
def compare_model_value(model, value):
re = True
for p in model.parameters():
re &= torch.equal(p, torch.full_like(p, value, dtype=p.dtype))
return re
@pytest.fixture(scope="function")
def del_tmp():
del_tmp_file()
yield
del_tmp_file()
def return_prefix_path(save_ckpt_folder):
if save_ckpt_folder.startswith("local:"):
return LOCAL_SAVE_PATH
else:
return BOTO_SAVE_PATH
def return_latest_save_path(save_ckpt_folder, total_step, snapshot_freq, ckpt_freq):
snapshot_latest_step, normal_latest_step = 0, 0
snapshot_latest_count, normal_latest_count = 0, 0
for i in range(total_step):
if (i + 1) % ckpt_freq == 0:
normal_latest_step = i + 1
normal_latest_count += 1
else:
if (i + 1) % snapshot_freq == 0:
snapshot_latest_step = i + 1
snapshot_latest_count += 1
if snapshot_latest_step == 0:
return None, None
if normal_latest_step >= snapshot_latest_step:
return normal_latest_step, os.path.join(return_prefix_path(save_ckpt_folder), f"{normal_latest_step}")
elif normal_latest_step < snapshot_latest_step:
if snapshot_latest_count % 2 == 0:
re_path = f"{return_prefix_path(save_ckpt_folder)}/snapshot/0"
else:
re_path = f"{return_prefix_path(save_ckpt_folder)}/snapshot/1"
return snapshot_latest_step, re_path
else:
assert False
@pytest.mark.usefixtures("del_tmp")
@pytest.mark.usefixtures("reset_singletons")
@pytest.mark.parametrize("step_info", step_info_list)
@pytest.mark.parametrize("ckpt_config", ckpt_config_list)
def test_ckpt_mm(step_info, ckpt_config, init_dist_and_model): # noqa # pylint: disable=unused-import
from internlm.core.context import global_context as gpc
from internlm.utils.model_checkpoint import CheckpointLoadMask, CheckpointLoadType
ckpt_config = Config(ckpt_config)
total_step, checkpoint_every, oss_snapshot_freq = step_info
print(total_step, checkpoint_every, oss_snapshot_freq, flush=True)
ckpt_config.checkpoint_every = checkpoint_every
ckpt_config.oss_snapshot_freq = oss_snapshot_freq
bond_return_latest_save_path = partial(
return_latest_save_path,
ckpt_config.save_ckpt_folder,
total_step,
ckpt_config.oss_snapshot_freq,
ckpt_config.checkpoint_every,
)
model, opim = init_dist_and_model
train_state = TrainState(gpc.config, None)
if isinstance(opim, HybridZeroOptimizer):
print("Is HybridZeroOptimizer!", flush=True)
else:
print("Is naive Adam!", flush=True)
ckpt_mm = CheckpointManager(ckpt_config, model=model, optimizer=opim)
latest_ckpt_step = None
for i in range(total_step):
overwrite_model_value(model, i)
overwrite_optim_state(opim, i)
train_state.batch_count = i
train_state.step_count += 1
save_ckpts, _, _ = ckpt_mm.is_now_to_save_ckpt(train_state)
if save_ckpts:
latest_ckpt_step = i
ckpt_mm.try_save_checkpoint(train_state)
wait_async_upload_finish()
latest_ckpt_info = ckpt_mm.query_lastest_ckpt()
step, path = bond_return_latest_save_path()
assert latest_ckpt_info["path"] == path
if latest_ckpt_step is None:
assert latest_ckpt_step == step
else:
assert latest_ckpt_step == step - 1
# resume from before save skpt
del ckpt_mm
SingletonMeta._instances = {}
ckpt_mm = CheckpointManager(ckpt_config, model=model, optimizer=opim)
ckpt_mm.try_resume_training(train_state)
if ckpt_config.checkpoint_every < total_step:
# we use step_count to decide when save ckpt, os here latest_ckpt_step = step_count - 1
assert train_state.step_count == latest_ckpt_step + 1
assert train_state.batch_count == latest_ckpt_step + 1
assert compare_optim_value(ckpt_mm.optimizer, latest_ckpt_step), ckpt_mm.optimizer.param_groups[0]["params"][0]
assert compare_model_value(ckpt_mm.model, latest_ckpt_step), list(ckpt_mm.model.parameters())[0][0]
if ckpt_mm.save_ckpt_folder.startswith("local:"):
ckpt_mm.load_ckpt_info = dict(
path=os.path.join(LOCAL_SAVE_PATH, f"{ckpt_config.checkpoint_every}"),
content=CheckpointLoadMask(("all",)),
ckpt_type=CheckpointLoadType.INTERNLM,
)
else:
ckpt_mm.load_ckpt_info = dict(
path=os.path.join(BOTO_SAVE_PATH, f"{ckpt_config.checkpoint_every}"),
content=CheckpointLoadMask(("all",)),
ckpt_type=CheckpointLoadType.INTERNLM,
)
ckpt_mm.try_resume_training(train_state)
assert train_state.step_count == ckpt_config.checkpoint_every
assert train_state.batch_count == ckpt_config.checkpoint_every
# compare value is same with i.
assert compare_optim_value(ckpt_mm.optimizer, ckpt_config.checkpoint_every - 1), ckpt_mm.optimizer.param_groups[
0
]["params"][0]
assert compare_model_value(ckpt_mm.model, ckpt_config.checkpoint_every - 1), list(ckpt_mm.model.parameters())[
0
][0]
else:
pass
STOP_FILE_PATH = "./alter.log"
def query_quit_file(rank, world_size=2):
from internlm.core.context import global_context as gpc
from internlm.initialize import initialize_distributed_env
from internlm.utils.model_checkpoint import CheckpointSaveType
ckpt_config = Config(
dict(
enable_save_ckpt=True,
save_ckpt_folder=BOTO_SAVE_PATH,
load_optimizer=True,
checkpoint_every=0,
async_upload=True,
async_upload_tmp_folder=ASYNC_TMP_FOLDER,
snapshot_ckpt_folder="/".join([BOTO_SAVE_PATH, "snapshot"]),
oss_snapshot_freq=0,
stop_file_path=STOP_FILE_PATH,
load_model_only_folder=None,
load_given_ckpt=False,
load_ckpt_folder=None,
is_old_api=True,
),
)
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12376"
initialize_distributed_env(config=init_config, launcher="torch", master_port=12376, args_check=False)
train_state = TrainState(init_config, None)
ckpt_mm = CheckpointManager(ckpt_config, model=None, optimizer=None)
if rank == 0:
with open(STOP_FILE_PATH, "w+") as f:
f.write("5")
dist.barrier()
for i in range(10):
train_state.step_count = i
now_break, now_save_ckpt, save_type = ckpt_mm.quit_signal_handler(train_state)
print(
f"step:{i}, rank:{rank}, now_break:{now_break}, now_save_ckpt:{now_save_ckpt}, save_type:{save_type}",
flush=True,
)
if train_state.step_count == 5:
assert now_break is True
assert now_save_ckpt is True
assert save_type is CheckpointSaveType.NORMAL_CHECKPOINT
dist.barrier()
gpc.destroy()
def test_quit_siganl_handler(): # noqa # pylint: disable=unused-import
import multiprocessing
from multiprocessing.pool import Pool
world_size = 2
with Pool(processes=world_size, context=multiprocessing.get_context("spawn")) as pool:
items = [(0,), (1,)]
for result in pool.starmap(query_quit_file, items):
print(f"Got result: {result}", flush=True)
os.remove(STOP_FILE_PATH)
if __name__ == "__main__":
pytest.main()