mirror of https://github.com/InternLM/InternLM
				
				
				
			
		
			
				
	
	
		
			64 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
#!/usr/bin/env python
 | 
						|
# -*- encoding: utf-8 -*-
 | 
						|
 | 
						|
import math
 | 
						|
 | 
						|
from torch import Tensor, nn
 | 
						|
 | 
						|
 | 
						|
def scaled_init_method_normal(sigma: float = 1.0, num_layers: int = 1):
 | 
						|
    """Init method based on N(0, sigma/sqrt(2*num_layers)."""
 | 
						|
    std = sigma / math.sqrt(2.0 * num_layers)
 | 
						|
 | 
						|
    def init_(tensor):
 | 
						|
        return nn.init.normal_(tensor, mean=0.0, std=std)
 | 
						|
 | 
						|
    return init_
 | 
						|
 | 
						|
 | 
						|
def normal_(mean: float = 0.0, std: float = 1.0):
 | 
						|
    r"""Return the initializer filling the input Tensor with values drawn from the normal distribution
 | 
						|
 | 
						|
     .. math::
 | 
						|
        \mathcal{N}(\text{mean}, \text{std}^2)
 | 
						|
 | 
						|
    Args:
 | 
						|
        mean (float): the mean of the normal distribution. Defaults 0.0.
 | 
						|
        std (float): the standard deviation of the normal distribution. Defaults 1.0.
 | 
						|
    """
 | 
						|
 | 
						|
    def initializer(tensor: Tensor):
 | 
						|
        return nn.init.normal_(tensor, mean, std)
 | 
						|
 | 
						|
    return initializer
 | 
						|
 | 
						|
 | 
						|
def scaled_init_method_uniform(sigma: float = 1.0, num_layers: int = 1):
 | 
						|
    """Init method based on p(x)=Uniform(-a, a) where std(x)=sigma/sqrt(2*num_layers)."""
 | 
						|
    std = sigma / math.sqrt(2.0 * num_layers)
 | 
						|
    a = math.sqrt(3.0 * std)
 | 
						|
 | 
						|
    def init_(tensor):
 | 
						|
        return nn.init.uniform_(tensor, -a, a)
 | 
						|
 | 
						|
    return init_
 | 
						|
 | 
						|
 | 
						|
def uniform_(mean: float = 0.0, std: float = 1.0):
 | 
						|
    r"""Return the initializer filling the input Tensor with values drawn from the uniform distribution
 | 
						|
 | 
						|
     .. math::
 | 
						|
        \mathcal{U}(mean-a, mean+a), where a satisfies \mathcal{U}_{std}=std.
 | 
						|
 | 
						|
    Args:
 | 
						|
        mean (float): the mean of the uniform distribution. Defaults 0.0.
 | 
						|
        std (float): the standard deviation of the uniform distribution. Defaults 1.0.
 | 
						|
    """
 | 
						|
 | 
						|
    a = math.sqrt(3.0 * std)
 | 
						|
 | 
						|
    def initializer(tensor: Tensor):
 | 
						|
        return nn.init.uniform_(tensor, mean - a, mean + a)
 | 
						|
 | 
						|
    return initializer
 |