mirror of https://github.com/InternLM/InternLM
				
				
				
			
		
			
				
	
	
		
			448 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			448 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
#!/usr/bin/env python
 | 
						|
# -*- encoding: utf-8 -*-
 | 
						|
 | 
						|
import time
 | 
						|
from functools import partial
 | 
						|
from typing import Callable, Iterable, Union
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.distributed as dist
 | 
						|
from torch import nn
 | 
						|
from torch.utils.data import ConcatDataset, DataLoader
 | 
						|
 | 
						|
import internlm
 | 
						|
from internlm.core.context import ParallelMode
 | 
						|
from internlm.core.context import global_context as gpc
 | 
						|
from internlm.core.naive_amp import NaiveAMPModel
 | 
						|
from internlm.core.trainer import TrainState
 | 
						|
from internlm.data.batch_sampler import StaticBatchSampler, get_dpsampler_dataloader
 | 
						|
from internlm.data.collaters import jsonl_ds_collate_fn, packed_collate_fn
 | 
						|
from internlm.data.dataset import get_dataset_dict
 | 
						|
from internlm.data.dummy_dataset import RandomDataset
 | 
						|
from internlm.data.packed_dataset import (
 | 
						|
    PackedDataset,
 | 
						|
    PackedDatasetWithoutCuSeqlen,
 | 
						|
    get_packed_dataset_without_short_length,
 | 
						|
)
 | 
						|
from internlm.data.utils import DATASET_TYPE_IDS_MAP, unpack_data
 | 
						|
from internlm.model.moe import create_moe_param_groups, has_moe_layers
 | 
						|
from internlm.monitor import set_env_var
 | 
						|
from internlm.monitor.monitor import monitor_manager as mm
 | 
						|
from internlm.solver.beta2_scheduler import Beta2Scheduler
 | 
						|
from internlm.solver.lr_scheduler import FineTuneCosineAnnealingWarmupLR
 | 
						|
from internlm.solver.optimizer import HybridZeroOptimizer
 | 
						|
from internlm.solver.optimizer.utils import ParamBcastSyncHandler
 | 
						|
from internlm.utils.common import DummyProfile, get_master_node
 | 
						|
from internlm.utils.logger import get_logger
 | 
						|
from internlm.utils.megatron_timers import megatron_timer as timer
 | 
						|
from internlm.utils.parallel import (
 | 
						|
    is_no_pp_or_last_stage,
 | 
						|
    sync_model_param_with_ep,
 | 
						|
    sync_model_param_within_tp,
 | 
						|
)
 | 
						|
from internlm.utils.registry import MODEL_INITIALIZER
 | 
						|
 | 
						|
logger = get_logger(__file__)
 | 
						|
 | 
						|
 | 
						|
def initialize_distributed_env(config: str, launcher: str = "slurm", master_port: int = 8888, seed: int = 1024):
 | 
						|
    """
 | 
						|
    Initialize distributed environment for distributed training.
 | 
						|
 | 
						|
    Args:
 | 
						|
        config (str): Config file path.
 | 
						|
        launcher (str): Launcher for launching distributed environment, can be slurm or torch. "slurm" by default.
 | 
						|
        master_port (str): The master port for distributed training. 8888 by default.
 | 
						|
        seed (int, optional): Specified random seed for every process. 1024 by default.
 | 
						|
    """
 | 
						|
 | 
						|
    torch.cuda.empty_cache()
 | 
						|
 | 
						|
    if launcher == "torch":
 | 
						|
        internlm.launch_from_torch(config=config, seed=seed)
 | 
						|
    elif launcher == "slurm":
 | 
						|
        internlm.launch_from_slurm(
 | 
						|
            config=config,
 | 
						|
            host=get_master_node(),
 | 
						|
            port=master_port,
 | 
						|
            seed=seed,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        assert launcher in ["slurm", "torch"], "launcher only support slurm or torch"
 | 
						|
 | 
						|
 | 
						|
def initialize_model():
 | 
						|
    """
 | 
						|
    Initialize model.
 | 
						|
 | 
						|
    Returns: The neural network model to be trained or evaluated.
 | 
						|
    """
 | 
						|
 | 
						|
    model = MODEL_INITIALIZER.get_module(module_name=gpc.config.model_type)(**(gpc.config.model))
 | 
						|
    if isinstance(model, nn.ModuleList):
 | 
						|
        model = nn.ModuleList(
 | 
						|
            [
 | 
						|
                NaiveAMPModel(
 | 
						|
                    model=_m,
 | 
						|
                    output_to_fp32=False,  # manually controlled by interleaved pipleline scheduler
 | 
						|
                    dtype=gpc.config.model.get("dtype", torch.half),
 | 
						|
                    sync_buffer=False,
 | 
						|
                )
 | 
						|
                for _m in model
 | 
						|
            ]
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        model = NaiveAMPModel(
 | 
						|
            model=model,
 | 
						|
            output_to_fp32=is_no_pp_or_last_stage(),
 | 
						|
            dtype=gpc.config.model.get("dtype", torch.half),
 | 
						|
            sync_buffer=False,
 | 
						|
        )
 | 
						|
 | 
						|
    # This sync is very important, cause the model weights kept in optimizer are copied
 | 
						|
    # from the origin parameters in the memory, so we should make sure the dp sync
 | 
						|
    # does not influence the model weights in optimizer be different with the origin parameters.
 | 
						|
    sync_model_param_with_ep(model)
 | 
						|
 | 
						|
    # This function is needed to make sure parameters that are not splitted by tensor parallelism are
 | 
						|
    # the same across tensor parallelism.
 | 
						|
    sync_model_param_within_tp(model)
 | 
						|
 | 
						|
    return model
 | 
						|
 | 
						|
 | 
						|
def initialize_optimizer(model: Union[nn.Module, nn.ModuleList]):
 | 
						|
    """
 | 
						|
    Initialize optimizer.
 | 
						|
 | 
						|
    Args:
 | 
						|
        model (torch.nn.Module): Your model instance to be trained or evaluated.
 | 
						|
 | 
						|
    Returns: A tuple of (optimizer, beta2_scheduler, lr_scheduler).
 | 
						|
    """
 | 
						|
    param_bcast_sync_handler = ParamBcastSyncHandler(model)
 | 
						|
    adam_cfg = gpc.config.adam
 | 
						|
    if gpc.config.model.num_experts > 1:
 | 
						|
        params = create_moe_param_groups(model, adam_cfg.weight_decay)
 | 
						|
    else:
 | 
						|
        params = [{"params": model.parameters(), "weight_decay": adam_cfg.weight_decay}]
 | 
						|
    naive_optimizer = torch.optim.AdamW(
 | 
						|
        params=params,
 | 
						|
        lr=adam_cfg.lr,
 | 
						|
        betas=(adam_cfg.adam_beta1, adam_cfg.adam_beta2),
 | 
						|
        eps=adam_cfg.adam_eps,
 | 
						|
    )
 | 
						|
 | 
						|
    has_moe = has_moe_layers(model)
 | 
						|
    optimizer = HybridZeroOptimizer(
 | 
						|
        naive_optimizer,
 | 
						|
        grad_scal_cfg=gpc.config.grad_scaler,
 | 
						|
        zero_cfg=gpc.config.hybrid_zero_optimizer,
 | 
						|
        has_moe=has_moe,
 | 
						|
        param_bcast_sync_handler=param_bcast_sync_handler,
 | 
						|
    )
 | 
						|
 | 
						|
    beta2_scheduler = Beta2Scheduler(optimizer=naive_optimizer, **gpc.config.beta2_scheduler)
 | 
						|
 | 
						|
    lr_scheduler = FineTuneCosineAnnealingWarmupLR(optimizer, **gpc.config.lr_scheduler)
 | 
						|
 | 
						|
    return optimizer, beta2_scheduler, lr_scheduler
 | 
						|
 | 
						|
 | 
						|
def get_train_data_loader(
 | 
						|
    num_worker: int = 0, dataset_generate_func: Callable = None, train_sampler=None, train_collate_fn=None
 | 
						|
):
 | 
						|
    """
 | 
						|
    Generate and return the training data loader.
 | 
						|
 | 
						|
    Returns: A tuple of (train_dl, dataset_types).
 | 
						|
    """
 | 
						|
 | 
						|
    # Get the dataset types
 | 
						|
    dataset_types = None
 | 
						|
    dataset_types = list(DATASET_TYPE_IDS_MAP.keys())
 | 
						|
    data_cfg = gpc.config.data
 | 
						|
 | 
						|
    # Get the sample weight dictionary
 | 
						|
    train_folder = data_cfg.train_folder
 | 
						|
 | 
						|
    if not train_folder:
 | 
						|
        train_ds = RandomDataset(num_samples=1000000, max_len=data_cfg.seq_len)
 | 
						|
        if data_cfg.pack_sample_into_one:
 | 
						|
            train_ds = PackedDatasetWithoutCuSeqlen(
 | 
						|
                train_ds, max_length_per_sample=data_cfg.seq_len, packed_length=data_cfg.packed_length
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            train_ds = PackedDataset(
 | 
						|
                train_ds, max_length_per_sample=data_cfg.seq_len, packed_length=data_cfg.packed_length
 | 
						|
            )
 | 
						|
    else:
 | 
						|
        if dataset_generate_func is not None:
 | 
						|
            train_ds = dataset_generate_func()
 | 
						|
        else:
 | 
						|
            train_ds = get_packed_dataset_without_short_length(
 | 
						|
                folder=data_cfg.train_folder,
 | 
						|
                packed_length=data_cfg.packed_length,
 | 
						|
                max_length_per_sample=data_cfg.seq_len,
 | 
						|
                show_progress=dist.get_rank() == 0,
 | 
						|
                min_length=data_cfg.min_length,
 | 
						|
                min_length_dict=data_cfg.get("min_length_dict", {}),
 | 
						|
                pack_into_one_sample=data_cfg.pack_sample_into_one,
 | 
						|
            )
 | 
						|
 | 
						|
    if dataset_generate_func is None or not train_folder:
 | 
						|
        # partition already completed
 | 
						|
        assert isinstance(train_ds, (PackedDataset, PackedDatasetWithoutCuSeqlen, ConcatDataset))
 | 
						|
        # Create the training dataset sampler
 | 
						|
        train_sampler = StaticBatchSampler(
 | 
						|
            train_ds.datasets if isinstance(train_ds, ConcatDataset) else [train_ds],
 | 
						|
            batch_size=data_cfg.micro_num,
 | 
						|
            rampup_batch_size=data_cfg.rampup_batch_size,
 | 
						|
            micro_bsz=data_cfg.micro_bsz,
 | 
						|
            seed=1024,
 | 
						|
            drop_last=True,
 | 
						|
            data_rank=gpc.get_local_rank(ParallelMode.DATA),
 | 
						|
            data_world_size=gpc.get_world_size(ParallelMode.DATA),
 | 
						|
        )
 | 
						|
 | 
						|
    if dataset_generate_func is None or not train_folder:
 | 
						|
        train_collate_fn = partial(packed_collate_fn, packed_length=data_cfg.packed_length)
 | 
						|
 | 
						|
    # Create the training data loader
 | 
						|
    train_dl = DataLoader(
 | 
						|
        dataset=train_ds,
 | 
						|
        batch_sampler=train_sampler,
 | 
						|
        num_workers=num_worker,
 | 
						|
        pin_memory=True,
 | 
						|
        collate_fn=train_collate_fn,
 | 
						|
        persistent_workers=num_worker > 0,
 | 
						|
    )
 | 
						|
 | 
						|
    return train_dl, dataset_types
 | 
						|
 | 
						|
 | 
						|
def get_validation_data_loader(
 | 
						|
    num_worker: int = 0, dataset_generate_func: Callable = None, val_collate_fn=None, dataloader_func=None
 | 
						|
):
 | 
						|
    """Generate and return the validation data loader."""
 | 
						|
 | 
						|
    data_cfg = gpc.config.data
 | 
						|
 | 
						|
    if not data_cfg.valid_folder:
 | 
						|
        val_ds = RandomDataset(num_samples=gpc.get_world_size(ParallelMode.DATA) * 500, max_len=data_cfg.seq_len)
 | 
						|
    else:
 | 
						|
        if dataset_generate_func is not None:
 | 
						|
            assert val_collate_fn and dataloader_func is not None
 | 
						|
            val_ds = dataset_generate_func()
 | 
						|
        else:
 | 
						|
            val_ds = get_dataset_dict(folder=data_cfg.valid_folder, split="")
 | 
						|
 | 
						|
    if not isinstance(val_ds, dict):
 | 
						|
        val_ds = {"val": val_ds}
 | 
						|
 | 
						|
    if val_collate_fn is None or not data_cfg.valid_folder:
 | 
						|
        val_collate_fn = partial(jsonl_ds_collate_fn, max_length_per_sample=data_cfg.seq_len)
 | 
						|
 | 
						|
    val_dls = {}
 | 
						|
    for val_name, ds in val_ds.items():
 | 
						|
        if dataloader_func and data_cfg.valid_folder is not None:
 | 
						|
            val_dls[val_name] = dataloader_func(dataset=ds, collate_fn=val_collate_fn)
 | 
						|
            if gpc.is_rank_for_log():
 | 
						|
                logger.info(
 | 
						|
                    f"load validation dataset {val_name} with valid batch size {str(data_cfg.valid_micro_num)} and "
 | 
						|
                    f"{ds.size} Byte samples."
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            # making the batch_size of validate larger can speed up the evaluation, but it should not be too large,
 | 
						|
            # otherwise too much data may be dropped
 | 
						|
            batch_size = min(
 | 
						|
                data_cfg.valid_micro_num * data_cfg.micro_bsz, len(ds) // gpc.get_world_size(ParallelMode.DATA)
 | 
						|
            )
 | 
						|
            batch_size = batch_size // data_cfg.micro_bsz * data_cfg.micro_bsz
 | 
						|
 | 
						|
            if batch_size == 0 and gpc.is_rank_for_log():
 | 
						|
                logger.info(f"skip validate {val_name}.")
 | 
						|
                continue
 | 
						|
 | 
						|
            val_dls[val_name] = get_dpsampler_dataloader(
 | 
						|
                ds,
 | 
						|
                shuffle=False,
 | 
						|
                num_workers=num_worker,
 | 
						|
                batch_size=batch_size,
 | 
						|
                collate_fn=val_collate_fn,
 | 
						|
                drop_last=True,
 | 
						|
            )  # drop_last=True, otherwise it may cause problems in the last batch
 | 
						|
 | 
						|
            if gpc.is_rank_for_log():
 | 
						|
                logger.info(
 | 
						|
                    f"load validation dataset {val_name} with valid batch size {str(batch_size)} and "
 | 
						|
                    f"samples {str(len(val_dls[val_name]))}."
 | 
						|
                )
 | 
						|
 | 
						|
    return val_dls
 | 
						|
 | 
						|
 | 
						|
def load_new_batch(train_dl: DataLoader, train_iter: Iterable, train_state: TrainState):
 | 
						|
    """
 | 
						|
    Load and return the new batch data based on training data loader.
 | 
						|
 | 
						|
    Args:
 | 
						|
        train_dl (torch.utils.data.DataLoader): Dataloader for training.
 | 
						|
        train_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader).
 | 
						|
        train_state (TrainState): Current training state.
 | 
						|
 | 
						|
    Returns: A batch data and the updated train_iter.
 | 
						|
    """
 | 
						|
 | 
						|
    timer("batch-gen").start()
 | 
						|
    try:
 | 
						|
        batch = next(train_iter)  # structure is ({'input_ids': Tensor, 'cu_seqlens': Tensor}, Tensor)
 | 
						|
        if hasattr(train_state, "batch_sampler_iter"):
 | 
						|
            next(train_state.batch_sampler_iter)
 | 
						|
    except StopIteration:
 | 
						|
        train_iter = iter(train_dl)
 | 
						|
        batch = next(train_iter)
 | 
						|
        train_state.num_consumed_samples_in_epoch = 0
 | 
						|
        if hasattr(train_state, "batch_sampler"):
 | 
						|
            train_state.batch_sampler_iter = iter(train_state.batch_sampler)
 | 
						|
            next(train_state.batch_sampler_iter)
 | 
						|
    timer("batch-gen").stop()
 | 
						|
 | 
						|
    if batch[0].get("type_ids", None) is not None:
 | 
						|
        # if use_flash_attn is False, we need to unpack type_ids
 | 
						|
        if not gpc.config.model.use_flash_attn:
 | 
						|
            batch[0]["type_ids"] = unpack_data(batch[0]["type_ids"], batch[0]["cu_seqlens"])
 | 
						|
 | 
						|
    return batch, train_iter
 | 
						|
 | 
						|
 | 
						|
def initialize_llm_profile(profiling: bool = False, start_time: str = None):
 | 
						|
    """Initialize and return the profiler context manager instance."""
 | 
						|
 | 
						|
    if profiling and gpc.get_local_rank(ParallelMode.DATA) == 0 and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
 | 
						|
        llm_profile = torch.profiler.profile
 | 
						|
        logger.info(f"Do profiling in rank {gpc.get_global_rank()}!")
 | 
						|
    else:
 | 
						|
        llm_profile = DummyProfile
 | 
						|
 | 
						|
    return llm_profile(
 | 
						|
        activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
 | 
						|
        schedule=torch.profiler.schedule(skip_first=5, wait=1, warmup=1, active=1, repeat=1),
 | 
						|
        on_trace_ready=torch.profiler.tensorboard_trace_handler(
 | 
						|
            f"{gpc.config.JOB_NAME}/{start_time}/traces/rank{gpc.get_global_rank()}_"
 | 
						|
            + f"dp{gpc.get_local_rank(ParallelMode.DATA)}_"
 | 
						|
            + f"tp{gpc.get_local_rank(ParallelMode.TENSOR)}_"
 | 
						|
            + f"pp{gpc.get_local_rank(ParallelMode.PIPELINE)}",
 | 
						|
        ),
 | 
						|
        with_stack=True,
 | 
						|
        with_modules=True,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def record_current_batch_training_metrics(
 | 
						|
    get_tflops_func,
 | 
						|
    logger,
 | 
						|
    writer,
 | 
						|
    success_update,
 | 
						|
    batch_count,
 | 
						|
    batch,
 | 
						|
    train_state,
 | 
						|
    optimizer,
 | 
						|
    beta2_scheduler,
 | 
						|
    trainer,
 | 
						|
    start_time,
 | 
						|
    loss,
 | 
						|
    moe_loss,
 | 
						|
    grad_norm,
 | 
						|
    metric,
 | 
						|
    update_panel,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Print some training metrics of current batch.
 | 
						|
    """
 | 
						|
 | 
						|
    set_env_var(key="LAST_ACTIVE_TIMESTAMP", value=int(time.time()))
 | 
						|
 | 
						|
    if success_update in (0, True):
 | 
						|
        train_state.num_consumed_tokens += batch[1].nelement() * gpc.get_world_size(ParallelMode.DATA)
 | 
						|
    if is_no_pp_or_last_stage():
 | 
						|
        acc_perplex = metric.get_metric()
 | 
						|
 | 
						|
    if success_update and gpc.is_rank_for_log():
 | 
						|
        lr = optimizer.param_groups[0]["lr"]
 | 
						|
        if hasattr(trainer.engine.optimizer, "grad_scaler"):
 | 
						|
            scaler = trainer.engine.optimizer.grad_scaler._scale.item()
 | 
						|
        elif hasattr(trainer.engine.optimizer.optim, "grad_scaler"):
 | 
						|
            scaler = trainer.engine.optimizer.optim.grad_scaler._scale.item()
 | 
						|
 | 
						|
        num_tokens_in_batch = batch[1].nelement()
 | 
						|
        num_samples_in_batch = sum([len(b) - 1 for b in batch[0]["cu_seqlens"]])
 | 
						|
        max_length_in_batch = max([(b[1:] - b[:-1]).max().item() for b in batch[0]["cu_seqlens"]])
 | 
						|
        max_samples_in_batch = max([len(b) - 1 for b in batch[0]["cu_seqlens"]])
 | 
						|
        min_samples_in_batch = min([len(b) - 1 for b in batch[0]["cu_seqlens"]])
 | 
						|
 | 
						|
        tk_per_gpu = 0
 | 
						|
        tk_per_gpu = round(
 | 
						|
            num_tokens_in_batch
 | 
						|
            * gpc.get_world_size(ParallelMode.DATA)
 | 
						|
            / gpc.get_world_size(ParallelMode.GLOBAL)
 | 
						|
            / (time.time() - start_time),
 | 
						|
            2,
 | 
						|
        )
 | 
						|
 | 
						|
        tflops = get_tflops_func((time.time() - start_time))
 | 
						|
 | 
						|
        infos = {
 | 
						|
            "tflops": tflops,
 | 
						|
            "step": batch_count,
 | 
						|
            "loss": loss.item(),
 | 
						|
            "moe_loss": moe_loss.item(),
 | 
						|
            "tgs (tokens/gpu/second)": tk_per_gpu,
 | 
						|
            "lr": lr,
 | 
						|
            "loss_scale": scaler,
 | 
						|
            "grad_norm": grad_norm,
 | 
						|
        }
 | 
						|
 | 
						|
        infos["micro_num"] = len(batch[1])
 | 
						|
        infos["num_consumed_tokens"] = train_state.num_consumed_tokens
 | 
						|
        infos["inf_nan_skip_batches"] = train_state.inf_nan_skip_batches
 | 
						|
        infos["num_samples_in_batch"] = num_samples_in_batch  # the number of batches which have the most samples
 | 
						|
        infos["largest_length"] = max_length_in_batch  # the longest input
 | 
						|
        infos["largest_batch"] = max_samples_in_batch  # the batch with the most samples
 | 
						|
        infos["smallest_batch"] = min_samples_in_batch
 | 
						|
        infos["adam_beta2"] = beta2_scheduler.get_beta2()
 | 
						|
 | 
						|
        fwd_bwd_time = round(timer("fwd-bwd").elapsed(), 2)
 | 
						|
        infos["fwd_bwd_time"] = fwd_bwd_time
 | 
						|
 | 
						|
        for key, value in acc_perplex.items():
 | 
						|
            infos[key] = value
 | 
						|
 | 
						|
        line = ""
 | 
						|
        for key, value in infos.items():
 | 
						|
            line += f"{key}={value} "
 | 
						|
            writer.add_scalar(key=key, value=value, step=train_state.step_count)
 | 
						|
 | 
						|
        if update_panel:
 | 
						|
            logger.info(
 | 
						|
                line,
 | 
						|
                extra={
 | 
						|
                    "step": batch_count,
 | 
						|
                    "lr": lr,
 | 
						|
                    "num_consumed_tokens": train_state.num_consumed_tokens,
 | 
						|
                    "grad_norm": grad_norm,
 | 
						|
                    "loss": loss.item(),
 | 
						|
                    "moe_loss": moe_loss.item(),
 | 
						|
                    "flops": tflops,
 | 
						|
                    "tgs": tk_per_gpu,
 | 
						|
                    "acc": acc_perplex["acc"],
 | 
						|
                    "perplexity": acc_perplex["perplexity"],
 | 
						|
                    "fwd_bwd_time": fwd_bwd_time,
 | 
						|
                },
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            logger.info(line)
 | 
						|
 | 
						|
        # if loss spike occurs, send alert info to feishu
 | 
						|
        mm.monitor_loss_spike(alert_address=gpc.config.alert_address, step_count=batch_count, cur_step_loss=loss.item())
 |